Kombinatoryal muamma!


12

Giriş: Kombinatorik Mantık

Kombine edici mantık (CL), temel olarak işlev olan birleştiriciler olarak adlandırılan şeylere dayanır . İki temel "yerleşik" birleştirici vardır Sve Kbunlar daha sonra açıklanacaktır.

Sol associativity

CL sol çağrışımdır , yani onu içeren anter çiftinin en solunda yer alan braketler (eşya içeren), eşyaları serbest bırakılarak çıkarılabilir. Örneğin, böyle bir şey:

((a b) c)

İçin azaltılabilir

(a b c)

Nerede (a b)büyük desteğinin aşırı solda ((a b) c), bu yüzden çıkarılabilir.

Sol ilişkinin çok daha büyük bir örneği (köşeli parantezler açıklamalardır):

  ((a b) c ((d e) f (((g h) i) j)))
= (a b c ((d e) f (((g h) i) j)))   [((a b) c...) = (a b c...)]
= (a b c (d e f (((g h) i) j)))     [((d e) f...) = (d e f...)]
= (a b c (d e f ((g h i) j)))       [((g h) i) = (g h i)]
= (a b c (d e f (g h i j)))         [((g h i) j) = (g h i j)]

Köşeli ayraçlar, aynı nesnelerin çevresine birden fazla çift sarıldığında da azaltılabilir. Örnekler:

((((a)))) -> a
a ((((b)))) -> a b
a (((b c))) -> a (b c) [(b c) is still a group, and therefore need brackets.
                        Note that this doesn't reduce to `a b c`, because
                        `(b c)` is not on the left.]

yerleşikleri

CL, iki "yerleşik" birleştiriciye sahiptir Sve Knesneleri (tek birleştiriciler veya parantez etrafına sarılmış bir birleştiriciler / gruplar) bu şekilde değiştirebilir:

K x y = x
S x y z = x z (y z)

Nerede x, yve zherhangi bir şey için stand-ins olabilir.

Bunun bir örneği Sve Kaşağıdaki gibidir:

  (S K K) x [x is a stand-in for anything]
= S K K x   [left-associativity]
= K x (K x) [S combinator]
= x         [K combinator]

Başka bir örnek:

  S a b c d
= a c (b c) d [combinators only work on the n objects to the right of it,
               where n is the number of "arguments" n is defined to have -
               S takes 3 arguments, so it only works on 3 terms]

Yukarıdakiler, ifadenin daha fazla değerlendirilemediği ve sınırlı bir süre içinde bir sonuç elde ettiği normal CL ifadelerinin örnekleridir. Normal olmayan ifadeler vardır (bunlar sona ermeyen ve sonsuza dek değerlendirilmeye devam edecek CL ifadeleridir), ancak meydan okuma kapsamları içinde değildir ve ele alınmasına gerek yoktur.

CL hakkında daha fazla bilgi edinmek istiyorsanız, bu Wikipedia sayfasını okuyun .

Görev:

Göreviniz, argümanların sayısı ve girdi olarak değerlendirdiği gibi, birleştiriciler yapmaktır;

{amount_of_args} = {evaluated}

{amount_of_args}Arg sayısına eşit pozitif bir tam sayı nerede ve {evaluated}şunlardan oluşur:

  • argüman miktarına kadar olan 1argümanlar, ilk argüman, 2ikincisi olmak vb.
    • Arg miktarının üzerindeki argüman numaralarının ( sadece bir 4zaman {amount_of_args}olduğu zaman 3) görünmeyeceği garanti edilir {evaluated}.
  • parantez ()

Yani girdi örnekleri:

3 = 2 3 1
4 = 1 (2 (3 4))

İlk girdi, Rüç bağımsız değişkeni ( R 1 2 3) içeren bir birleştirici (örneğin ) ister;

R 1 2 3 -> 2 3 1

İkinci girdi bunu sorar (bir birleştirici adıyla A):

A 1 2 3 4 -> 1 (2 (3 4))

Bu biçimde girdi göz önüne alındığında, bir dizi dönmelidir S, Kve ()bir combinator isminin yerine ve argümanlarla çalıştırdığınızda, aynı değerlendirilen açıklamada döndüren {evaluated}komut bloğu geri o combinator adı için ikame edilmektedir blokta.

Çıktı birleştirici deyiminin boşlukları kaldırılmış ve dış köşeli ayraçlar kaldırılmış olabilir, böylece benzer bir şey (S K K (S S))dönüştürülebilir SKK(SS).

Eğer programın çıktılarını test etmek isterseniz, @aditsu (içeren bir kombinatoriyel mantık ayrıştırıcı yapmıştır S, K, Ive hatta diğerleri gibi Bve C) burada .

Puan:

Bu bir , bu zorluğun amacı, bu 50 test vakası göz önüne alındığında, mümkün olan en düşük miktarda bayt elde etmektir . Lütfen 50 test vakası için sonuçlarınızı cevaba koyun veya bir macun (veya benzer bir şey) yapın ve bu macine için bir bağlantı gönderin.

Beraberlik durumunda, en eski çözüm kazanır.

Kurallar:

  • Cevabınız DOĞRU çıktı döndürmelidir - bu nedenle bir girdi verildiğinde, görevdeki tanıma göre doğru çıktıyı döndürmelidir.
  • Yanıtınız her test vakası için modern bir dizüstü bilgisayarda bir saat içinde çıkmalıdır.
  • Herhangi bir çözüm kodlamasına izin verilmez. Ancak, 10 birleştiriciye kadar sabit kodlama yapmanıza izin verilir.
  • Programınız aynı girdi için her seferinde aynı çözümü döndürmelidir.
  • Programınız yalnızca test senaryoları için değil, verilen tüm girdiler için geçerli bir sonuç döndürmelidir.

İnsanların diğer cevaplarda bulunan birleştiricileri çalmamasını nasıl sağlayabilirsiniz?
17'de

@Fatalize İnsanlar başkalarının cevaplarından ilham alabildikleri ve daha iyi cevaplar elde edebilmeleri için çok fazla önemli değil.
clismique

İlhamdan bahsetmişken, istenen sonuç bir içermediğinde , her şeyden 1çıkarabileceğinizi 1ve daha sonra bu cevap için çözümü satabileceğinizi fark ettim K(). Örnek: Çözüm için 2 -> 1ise K, bu nedenle çözüm 3 -> 2olduğunu KK, çözümü 4 -> 3olduğunu K(KK)vs.
Neil

Yanıtlar:


8

Haskell , skor 5017

Bu, soyutlamanın ortadan kaldırılması için olası en aptal algoritmayı birleştirir ((λ x . X ) = I; (λ x . Y ) = K y ; (λ x . M N ) = S (λ x . M ) (λ x . N ) ) her uygulamadan sonra kullanılan bir gözetleme deliği optimize edici ile. En önemli optimizasyon kuralı, algoritmanın her zaman üssel olarak patlamasını engelleyen S (K x ) (K y ) ↦ K ( xy ) 'dir.

Kurallar kümesi, dize çiftlerinin bir listesi olarak yapılandırılır, böylece yeni kurallarla oynamak kolaydır. Giriş ayrıştırıcısını bu amaçla yeniden kullanmanın özel bir bonusu olarak, S, K ve I giriş birleştiricilerinde de kabul edilir.

Kurallar koşulsuz uygulanmaz; bunun yerine, hem eski hem de yeni sürümler korunur ve en küçük sürümler yalnızca uzunlukları en iyi sürümün uzunluğunu bazı sabitlerden (şu anda 3 bayt) aştığında budanır.

Çıkış aşaması SKK'ya yeniden yazana kadar I'yi temel bir birleştirici olarak ele alarak puan biraz iyileşti. Bu şekilde KI = K (SKK), optimizasyonların geri kalanını karıştırmadan çıkışta SK'ye 4 bayt kısaltılabilir.

{-# LANGUAGE ViewPatterns #-}

import qualified Data.IntMap as I
import qualified Data.List.NonEmpty as N
import System.IO

data Term
  = V Int
  | S
  | K
  | I
  | A (N.NonEmpty (Int, Term, Term))
  deriving (Show, Eq, Ord)

parse :: String -> (Term, String)
parse = parseApp . parse1

parseApp :: (Term, String) -> (Term, String)
parseApp (t, ' ':s) = parseApp (t, s)
parseApp (t, "") = (t, "")
parseApp (t, ')':s) = (t, ')' : s)
parseApp (t1, parse1 -> (t2, s)) =
  parseApp (A (pure (appLen (t1, t2), t1, t2)), s)

parse1 :: String -> (Term, String)
parse1 (' ':s) = parse1 s
parse1 ('(':(parse -> (t, ')':s))) = (t, s)
parse1 ('S':s) = (S, s)
parse1 ('K':s) = (K, s)
parse1 ('I':s) = (I, s)
parse1 (lex -> [(i, s)]) = (V (read i), s)

ruleStrings :: [(String, String)]
ruleStrings =
  [ ("1 3(2 3)", "S1 2 3")
  , ("S(K(S(K1)))(S(K(S(K2)))3)", "S(K(S(K(S(K1)2))))3")
  , ("S(K(S(K1)))(S(K2))", "S(K(S(K1)2))")
  , ("S(K1)(K2)", "K(1 2)")
  , ("S(K1)I", "1")
  , ("S(S(K1)2)(K3)", "S(K(S1(K3)))2")
  , ("S(SI1)I", "S(SSK)1")
  ]

rules :: [(Term, Term)]
rules = [(a, b) | (parse -> (a, ""), parse -> (b, "")) <- ruleStrings]

len :: Term -> Int
len (V _) = 1
len S = 1
len K = 1
len I = 3
len (A ((l, _, _) N.:| _)) = l

appLen :: (Term, Term) -> Int
appLen (t1, S) = len t1 + 1
appLen (t1, K) = len t1 + 1
appLen (K, I) = 2
appLen (t1, t2) = len t1 + len t2 + 2

notA :: Term -> Bool
notA (A _) = False
notA _ = True

alt :: N.NonEmpty Term -> Term
alt ts =
  head $
  N.filter notA ts ++
  [A (N.nub (a N.:| filter (\(l, _, _) -> l <= minLen + 3) aa))]
  where
    a@(minLen, _, _) N.:| aa =
      N.sort $ do
        A b <- ts
        b

match :: Term -> Term -> I.IntMap Term -> [I.IntMap Term]
match (V i) t m =
  case I.lookup i m of
    Just ((/= t) -> True) -> []
    _ -> [I.insert i t m]
match S S m = [m]
match K K m = [m]
match I I m = [m]
match (A a) (A a') m = do
  (_, t1, t2) <- N.toList a
  (_, t1', t2') <- N.toList a'
  m1 <- match t1 t1' m
  match t2 t2' m1
match _ _ _ = []

sub :: I.IntMap Term -> Term -> Term
sub _ S = S
sub _ K = K
sub _ I = I
sub m (V i) = m I.! i
sub m (A a) =
  alt $ do
    (_, t1, t2) <- a
    pure (sub m t1 & sub m t2)

optimize :: Term -> Term
optimize t = alt $ t N.:| [sub m b | (a, b) <- rules, m <- match a t I.empty]

infixl 5 &

(&) :: Term -> Term -> Term
t1 & t2 = optimize (A (pure (appLen (t1, t2), t1, t2)))

elim :: Int -> Term -> Term
elim n (V ((== n) -> True)) = I
elim n (A a) =
  alt $ do
    (_, t1, t2) <- a
    pure (S & elim n t1 & elim n t2)
elim _ t = K & t

paren :: String -> Bool -> String
paren s True = "(" ++ s ++ ")"
paren s False = s

output :: Term -> Bool -> String
output S = const "S"
output K = const "K"
output I = paren "SKK"
output (V i) = \_ -> show i ++ " "
output (A ((_, K, I) N.:| _)) = paren "SK"
output (A ((_, t1, t2) N.:| _)) = paren (output t1 False ++ output t2 True)

convert :: Int -> Term -> Term
convert 0 t = t
convert n t = convert (n - 1) (elim n t)

process :: String -> String
process (lex -> [(n, lex -> [((`elem` ["=", "->"]) -> True, parse -> (t, ""))])]) =
  output (convert (read n) t) False

main :: IO ()
main = do
  line <- getLine
  putStrLn (process line)
  hFlush stdout
  main

Çevrimiçi deneyin!

Çıktı

  1. S (KS) K
  2. S (K (SS (KK))) (S (KK) S)
  3. S (K (SS)) (S (KK) K)
  4. S (K (SS (KK))) (S (KK), (S (KS) (S (K (S (SKK))) K)))
  5. S (K (S (K (SS (SK))))) (S (K (SS (SK))) (S (SKK) (SKK)))
  6. KK
  7. S (K (S (S (KS) (S (K (S (SKK))) K)))) (S (KK) K)
  8. S (K (SS (K (S (KK), (S (SKK) (SKK)))))) (S (SSK (KS)) (S (S (KS) (S (KK), (S (KS) K))) (K (S (K (S (SSK))) K))))
  9. S (K (S (KK))) (S (K (S (S (SKK) (SKK)))) K)
  10. SK
  11. S (KS) (S (KK) (S (K (SS)) (S (KK) K)))
  12. S (K (SS (K (S (KK) K)))) (S (KK), (S (KS) (S (SSK (KS)) (S (K (SS)) (S (KK) K) ))))
  13. S (K (S (K (S (K (SS (KK))) (S (KK) S))))) (S (K (SS (KK))) (S (KK), (S (KS) (S (K (S (SKK))) K))))
  14. S (K (S (K (S (K (SS (KK))) (S (KK) S))))) (S (K (S (SKK))) K)
  15. S (K (S (K (S (KS) K)))) (S (KS) K)
  16. S (K (S (KS) K))
  17. S (K (S (K (S (K (SS (K (S (S (KS) (S (KK) (SSK))) (K (S (SKK) (SKK))))))) (S (KK), (S (KS) K)))))) (S (K (SS (K (SSK)))) (S (KK), (S (KS) (S (KK) (SSK)))) )
  18. SSS (KK)
  19. KK
  20. S (KK), (S (KK), (S (S (KS) K) (S (K (S (SKK))) (S (K (S (SKK))) K))))
  21. S (S (KS) (S (KK), (S (KS) (S (KK) (S (K (SS)) (S (KK) K)))))) (K (S (K (S ( S (KS) (S (K (S (SKK))) K)))) (S (KK) K)))
  22. S (KK)
  23. S (KS) (S (KK), (S (KS) (S (KK) (S (K (SS)) (S (KK) K)))))
  24. S (K (S (K (S (KS) K)))) (S (K (S (S (KS) (S (KK) (S (K (SS)) (S (KK) K))) ))) (S (KK) (S (K (SS)) (S (KK) K))))
  25. S (KS) (S (KK), (S (KS) K))
  26. S (S (KS) (S (KK), (S (KS) (S (KK), (S (K (S (K (SS (KK))))) (S (KS) (S (KK), (S (SSK (KS)) (S (KS) (S (SKK) (SKK))))))))))) (K (S (S (KS) (S (K (S (K (S (KS ) (S (K (S (KS) (S (K (S (SKK))) K)))))))) (S (K (S (SKK))) K))) (S (K ( S (K (S (KK) K)))) (S (K (S (SKK))) K))))
  27. S (K (S (K (S (K (SS (K (S (K (S (S (KS) (S (K (S (SKK))) K)))) (S (KK) K)) ))) (S (KK), (S (KS) K)))))) (S (K (SS (K (S (K (SS)) (S (KK) K))))) (S ( KK) (S (KS) (S (KK) (S (K (SS)) (S (KK) K))))))
  28. K (S (KK))
  29. S (K (S (K (S (K (S (K (S (KS) K)))) (S (K (S (S (KS) (S (KK) (S (K (SS)) ( S (KK) K)))))) K))))) (S (K (S (S (KS) (S (KK) (S (K (SS)) (S (KK) K))) ))) (S (KK) (S (K (SS)) (S (KK) K))))
  30. S (KK) (S (K (SSS (KK))))
  31. K (SSS (KK))
  32. S (K (SS (K (S (S (KS) (S (KK), (S (KS) K))) (K (S (K (S (SKK))) K)))))) (S (KK), (S (KS) (SS (S (S (KS) (S (KK), (S (KS) (S (K (S (KS) (S (KK), (S (KS) K))) )))))) (KK))))
  33. S (K (S (K (S (K (S (K (SS (KK))) (S (KK) S))))))) (S (K (SS (K (S (KK) K) ))) (S (KK) (SSS (KS))))
  34. S (K (S (K (S (KK) K))))
  35. S (K (S (K (S (K (S (K (SS (K (S (K (S (SKK))) K)))) (S (KK), (S (KS) (S (KK) (S (K (SS (K (S (K (S (SKK))) K)))) (S (KK) (S (K (SS)) (S (KK) K))))))) )))))) (S (K (S (S (KS) (S (K (S (SKK))) K)))) (S (KK) K))
  36. S (K (SS (K (S (K (SS (K (S (K (S (SKK))) K)))) (S (KK), (S (KS) (SS (S (S (KS) (S (KK), (S (KS) (S (K (S (SKK))) K))))) (KK)))))))) (S (KK), (S (KS) (S ( KK) (S (K (S (K (S (K (S (K (S (K (SS (KK))) (S (KK) S))))))))) (S (K (SS (KK))) (S (KK), (S (KS) (S (K (S (KS) (S (KK), (S (KS) K))))))))))))
  37. S (KK), (S (K (S (K (S (KK), (S (KK) K))))) (SS (SK)))
  38. K (S (K (SSS (KK))))
  39. S (K (S (K (S (K (S (K (S (K (S (K (S (K (SS (K (S (K (S (S (KS) (S (K (S (SKK ))) K)))) (S (KK) K))))) (S (KK), (S (KS) K)))))) (S (K (SS (K (S (K (SS )) (S (KK) K))))) (S (KK), (S (KS) K))))))) (S (K (SS (K (S (K (SS)) (S ( KK) K))))) (S (KK), (S (KS) K))))))) (S (K (SS (K (S (K (SS)) (S (KK) K)) ))) (S (KK), (S (KS) (S (KK) (S (K (SS)) (S (KK) K))))))
  40. S (K (S (KK))) (S (KS) (S (KK), (S (K (S (KK), (S (KK) K))))))
  41. S (K (SS (K (S (S (KS) (S (KK), (S (KS) K))) (K (S (K (S (SKK))) K)))))) (S (KK), (S (KS) (S (KK), (S (K (S (K (S (K (SS (K (S (K (SS)) (S (KK) K))))) (S (KK), (S (KS) K)))))) (S (K (SS (K (S (KK) (S (K (SS)) K))))) (S (KK), (S ( K (SS)) (S (KK), (S (K (S (K (S (KK), (S (KS) K))))) (S (KS) K))))))))))
  42. S (K (S (K (S (K (S (K (S (K (S (K (S (K (S (K (S (K (SS (K (S (K (S (S (KS) (S (K (S (SKK))) K)))) (S (KK) K))))) (S (KK), (S (KS) K)))))) (S (K (SS (K (S (K (SS)) (S (KK) K))))) (S (KK), (S (KS) K))))))) (S (K (SS (K (S ( K (SS)) (S (KK) K))))) (S (KK), (S (KS) K))))))) (S (K (SS (K (S (K (SS)) (S (KK) K))))) (S (KK), (S (KS) K))))))) (S (K (SS (K (S (K (SS)) (S (KK) K))))) (S (KK), (S (KS) (S (KK) (S (K (SS)) (S (KK) K))))))
  43. K (K (K (K (K (S (KK), (S (KK), (S (K (SS (SK))) (SSK))))))))
  44. S (KK), (S (K (S (KK), (S (KK), (S (KK), (S (KK) K))))))
  45. S (K (S (K (S (K (S (K (S (K (S (K (S (K (S (K (S (K (S (K (S (K (SS (K (S ( K (S (S (KS) (S (K (S (SKK))) K)))) (S (KK) K))))) (S (KK), (S (KS) K)))) )) (S (K (SS (K (S (K (SS)) (S (KK) K))))) (S (KK), (S (KS) K))))))) (S ( K (SS (K (S (K (SS)) (S (KK) K))))) (S (KK), (S (KS) K))))))) (S (K (SS (K (S (K (SS)) (S (KK) K))))) (S (KK), (S (KS) K))))))) (S (K (SS (K (S (K ( SS)) (S (KK) K))))) (S (KK), (S (KS) K))))))) (S (K (SS (K (S (K (SS)) (S (KK) K))))) (S (KK), (S (KS) (S (KK) (S (K (SS)) (S (KK) K))))))
  46. S (K (S (K (S (K (S (K (S (K (SS (K (S (K (SS (K (S (K (SS (KK))) (S (KK), (S ( KS) (S (K (S (SKK))) K))))))) (S (KK), (S (KS) (S (KK), (S (SSK (KS)) (S (K (SS )) (S (KK) K)))))))))) (S (KK), (S (KS) (S (KK), (S (K (SS (K (S (KK), (S (KS ) (S (KK), (S (K (SS (K (S (KK), (S (KS) K))))) (S (KK) (S (K (SS)) (S (KK), (S (K (SS (K (S (KK) K)))) (S (KK) S)))))))))))) (S (KK) (S (K (SS)) K)) )))))))) (S (K (SS (K (S (KK) (S (K (S (S (KS) (S (KK) (S (K (SS)) (S (KK) K)))))) (S (KK) (S (K (SS)) (S (KK) K)))))))) (S (KK) S)))))) (S (K (SS (K (S (K (S (S (KS) (S (KK) (S (K (SS)) (S (KK) K)))))) (S (KK), (S (K ( SS)) (S (KK) K))))))) (S (KK), (S (KS) (S (KK), (S (K (S (K (S (KS) (S (KK) ( S (KS) K)))))) (S (KS) (S (KK) (S (K (SS)) (S (KK) K)))))))))
  47. S (K (SS (K (SS (S (S (KS) (S (KK) S))) (KK))))) (S (KK), (S (KS) (S (K (S (K (S (KS) (S (KK), (S (KS) (S (KK), (S (K (S (K (S (K (SS (K (S (K (S (S (KS) (S ( KK) (S (K (SS)) (S (KK) K)))))) (S (KK) (S (K (SS)) (S (KK) K))))))) (S (KK), (S (KS) K)))))))))))))) (S (K (S (S (KS) (S (KK) (S (K (SS)) (S ( KK) (S (K (S (K (S (KS) K)))) (S (K (SS (K (S (K (SS)) (S (KK) K))))) (S ( KK) (S (KS) (S (KK) (S (K (SS)) (S (KK) K))))))))))))) (S (KK) (S (K (S (K (S (KK), (S (KS) (S (KK), (S (K (SS (K (S (KK), (S (KS) K))))) (S (KK) (S (K (SS)) K))))))))) (S (KS) (S (KK), (S (K (SS (K (S (KK) K)))) (S (KK), (S ( KS) (S (SSK (KS)) (S (K (SS (KK))) (S (KK), (S (KS) (S (K (S (SKK))) K))))))) )))))))))
  48. K (S (K (S (KK), (S (K (S (KK), (S (K (S (KK), (S (KK) K))))))))))
  49. S (KK), (S (K (S (K (S (KK), (S (K (S (K (S (KK), (S (K (S (K (S (KK), (S (K (S ( K (S (KK), (S (K (S (KK))) (S (K (S (SKK))) K)))))) (S (K (S (SKK))) K))) ))) (S (K (S (SKK))) K)))))) (S (K (S (SKK))) K)))))) (S (K (S (SKK))) K))
  50. S (K (S (K (S (K (S (K (S (K (S (KK))) (S (K (SS (K (S (K (S (S (KS) (S (K ( S (SKK))) K)))) (S (KK) K))))) (S (KK), (S (KS) K))))))) (S (K (SS (K (G (K (SS)) (S (KK) K))))) (S (KK), (S (KS) K))))))) (S (K (SS (K (S (K (SS) ) (S (KK) K))))) (S (KK), (S (KS) (S (KK), (S (K (S (K (S (KK), (S (KK), (S (KK) (S (KK) K))))))) (S (K (SS)) (S (KK) K)))))))

İfadeleri otomatik olarak optimize etmek mümkün olabilir mi (ör. S (K x) (K y) = K (x y))?
CalculatorFeline

@CalculatorFeline Sorunuzu anlamıyorum; S (K x ) (K y ) olduğu otomatik K (optimize xy ).
Anders Kaseorg

Bekle, bu ifadeler kısmen uygulanan işlevler veya başka bir şey olarak mı temsil ediliyor? Kısmen uygulanmışsa, belki de son yorumum gibi bir şey yapabilirsiniz.
CalculatorFeline

@CalculatorFeline Gösterim, örneğin, 3 = 1 (2 3) ↦ 2 = S (K1) (S (K2) I) ↦ 2 = S (K1) 2 ↦ 1 = S (S (KS) (S (KK) (K1))) I ↦ 1 = S (S (KS) (K (K1))) I ↦ 1 = S (K (S (K1))) I ↦ 1 = S (K (S (K1 ))) I ↦ 1 = S (K1) ↦ S (KS) (S (KK) I) ↦ S (KS) K. Gördüğünüz gibi, zaten listelediğim diğerleriyle birlikte S (K x ) (K y ) ↦ K ( xy ) kuralını birçok kez kullandık ruleStrings. Eğer yapmasaydık, çıktı katlanarak daha uzun olurdu: bu küçük örnek için, S (S (KS) (S (S (KS) (S (KK) (KS))) (S (S (KS) (S (KK) (KK))) (S (KK) (SKK))))) (S (S (KS) (S (S (KS) (S (KK) (KS))) ( S (KS) K yerine S (S (KS) (S (KK) (KK))) (SK)))) (S (KK) (SK))).
Anders Kaseorg

5

Çözelti uzunlukları toplamı: 12945 8508 5872

Ayırıcı ise umursamıyor stdin'den giriş hatlarını alır ve Haskell kod =veya ->:

data E=S|K|V Int|A E E deriving Eq

instance Show E where
  showsPrec _ S = showChar 'S'
  showsPrec _ K = showChar 'K'
  showsPrec _ (V i) = shows i
  showsPrec p (A e f) = showParen (p>0) $ showsPrec 0 e . showsPrec 1 f

type SRead a = String -> (a,String) -- a simpler variation of ReadS

parse :: String -> E
parse s = let (e,"")=parseList (s++")") in e
parseList :: SRead E
parseList s = let (l,s')=parseL s in (foldl1 A l,s')
parseL :: SRead [E]
parseL (c:s) | c==' ' = parseL s
             | c==')' = ([],s)
parseL s = let (p,s')=parseExp s; (l,s'')=parseL s' in (p:l,s'')
parseExp :: SRead E
parseExp ('(':s) = parseList s
parseExp s = let [(n,s')]=reads s in (V n,s')

k e = A K e
s e f = A (A S e) f
i = s K K
s3 e f g = A (s e f) g
sk = A S K
ssk e f = A (s3 S K e) f

n `invars` (A e f) = n `invars` e || n `invars` f
n `invars` (V m)   = n==m
_ `invars` _       = False

comb (A e f) = comb e && comb f
comb (V _)   = False
comb _       = True

abstract _ (A (A S K) _) = sk
abstract n e | not (n `invars` e) = k e
abstract n (A e (V _)) | not (n `invars` e) = e
abstract n (A (A (V i) e) (V j)) | n==i && n==j =
                                   abstract n (ssk (V i) e)
abstract n (A e (A f g)) | comb e && comb f =
                                   abstract n (s3 (abstract n e) f g)
abstract n (A (A e f) g) | comb e && comb g =
                                   abstract n (s3 e (abstract n g) f)
abstract n (A (A e f) (A g h)) | comb e && comb g && f==h =
                                   abstract n (s3 e g f)
abstract n (A e f) = s (abstract n e) (abstract n f)
abstract n _ = i

abstractAll 0 e = e
abstractAll n e = abstractAll (n-1) $ abstract n e

parseLine :: String -> (Int,E)
parseLine s = let [(n,s')] = reads s
                  s''=dropWhile(`elem` " =->") s'
              in (n, parse s'')

solveLine :: String -> E
solveLine s = let (n,e) = parseLine s in abstractAll n e

main = interact $ unlines . map (show . solveLine) . lines

John Tromp: İkili Lambda Hesabı ve Kombinasyon Mantığı'nın birleştirici mantık hakkındaki Wikipedia makalesine bağlı bölüm 3.2'den geliştirilmiş braket soyutlamasını uygular . En kullanışlı özel durumlar S, değişkenleri derinlemesine iç içe yerleştirmekten kaçınmak için birleştiriciyi sadece alt başlıkları bastırmak için kullanır. Bazı alt sınavların eşitliğini kontrol eden durum, hiçbir test vakası için gerekli değildir. WBirleştiriciyi işlemek için özel bir durum olmasa da (Peter'ın cevabına bakın), daha kısa SS(SK)ifadeyi bulmak için kurallar birlikte çalışır . (Önce iç aramaları optimize etmeye çalışarak bir hata yaptım abstract, o zaman bu Woptimizasyon olmadı ve genel sonuç 16 bayt daha uzun oldu.)

Ve test örneklerinden sonuçlar:

S(KS)K
S(K(S(K(SS(KK)))K))S
S(K(S(K(SS))K))K
S(K(S(K(S(K(S(K(SS(KK)))K))S))(S(SKK))))K
S(K(S(K(SS(SK)))))(S(K(SS(SK)))(S(SKK)(SKK)))
KK
S(K(S(K(S(S(K(S(KS)(S(SKK))))K)))K))K
S(K(S(K(SS(K(S(KK)(S(SKK)(SKK))))))(S(KS))))(S(K(S(K(S(K(SS(K(S(K(S(SSK)))K))))K))S))K)
S(K(S(K(S(KK)))(S(S(SKK)(SKK)))))K
SK
S(K(S(K(S(K(S(S(KS)(S(KS)))))K))K))K
S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(KK)K))))K))S))(S(KS))))(SS)))K))K
S(K(S(K(S(K(S(K(SS(KK)))K))S))))(S(K(S(K(S(K(S(K(SS(KK)))K))S))(S(SKK))))K)
S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))))(S(SKK))))K
S(K(S(K(S(K(S(K(S(K(SS(K(S(KS)K))))K))S))K))S))K
S(K(S(KS)K))
S(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(K(S(K(S(K(S(K(S(K(SS(K(S(S(K(S(KS)(S(KS))))(S(K(S(K(S(K(SS(K(S(S(KS)(S(K(SS(K(S(SKK)(SKK)))))K))K))))K))S))K))(S(KK)K)))))K))S))K))S))K))(S(K(S(KK)K))K)
S(KK)(S(KK))
KK
S(K(S(KK)K))(S(S(KS)K)(S(K(S(K(S(SKK)))(S(SKK))))K))
S(K(S(K(S(K(S(S(K(S(K(S(K(S(KS)(S(KS))))(S(S(K(S(KS)(S(SKK))))K))))K))K)))K))K))K
S(KK)
S(K(S(K(S(K(S(K(S(S(KS)(S(K(S(KS)(S(KS))))))))K))K))K))K
S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))(S(S(KS)(S(KS))))))K))K))K
S(K(S(K(S(KS)K))S))K
S(K(S(K(S(K(S(K(SS(KK)))(S(KS))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(K(S(KS)(S(SKK))))K))))))))(S(SKK))))K)(S(K(S(K(S(K(S(KK)K))))(S(SKK))))K)))))K))S))K))S))K))S))(S(SKK)(SKK)))
S(K(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(K(S(KS)(S(KS))))(S(S(K(S(KS)(S(SKK))))K))))K))K))))K))K))K)))K))K))K))K
K(S(KK))
S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))(S(S(KS)(S(KS))))))K))K))K)
S(KK)(S(K(S(KK)(S(KK)))))
K(S(KK)(S(KK)))
S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)))(S(K(S(K(S(K(SS(K(S(K(S(SKK)))K))))K))S))K)))))K))S))K))S))(S(K(S(K(S(K(S(KS)K))S))K)))
S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))))))(S(K(S(K(S(K(SS(K(S(KK)K))))K))S))(S(KS)))
S(K(S(K(S(KK)K))))
S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(S(K(S(K(S(KS)(S(K(S(K(S(KS)(S(SKK))))K)))))(S(SKK))))K)))K))K))K))))))(S(S(K(S(KS)(S(SKK))))K))))K))K
S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))))))))))(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)))(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(KK)))(S(SKK))))K))))K))S))K))S))(S(SKK))))K)))))K))S))K))S))(S(K(S(K(S(K(S(KS)K))S))K))))
S(K(S(KK)(S(K(S(K(S(KK)K))K)))))(SS(SK))
K(S(K(S(KK)(S(KK)))))
S(K(S(K(S(K(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))(S(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(K(S(KS)(S(KS))))(S(S(K(S(KS)(S(SKK))))K))))K))K))))K))K))K))))K))K))K))K))))K))K))K))K))K)))K))K))K))K))K))K
S(K(S(K(S(K(S(KK)(S(K(S(K(S(KK)K))K)))))))S))K
S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(KS)K))S))K))))K))))(S(K(S(K(S(K(SS(K(S(K(S(SKK)))K))))K))S))K)))))K))S))K))S))K))S))K))S))K))S))K
S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))(S(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(K(S(KS)(S(KS))))(S(S(K(S(KS)(S(SKK))))K))))K))K))))K))K))K))))K))K))K))K))))K))K))K))K))K))))K))K))K))K))K))K)))K))K))K))K))K))K))K
K(K(K(K(K(S(K(S(KK)K))(S(K(SS(SK)))(SSK)))))))
S(KK)(S(K(S(K(S(K(S(K(S(KK)K))K))K))K)))
S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))(S(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(K(S(KS)(S(KS))))(S(S(K(S(KS)(S(SKK))))K))))K))K))))K))K))K))))K))K))K))K))))K))K))K))K))K))))K))K))K))K))K))K))))K))K))K))K))K))K))K)))K))K))K))K))K))K))K))K
S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))))))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(KK)K))K))K))))K))S))(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))(S(K(S(K(S(K(S(K(SS(K(S(KK)K))))K))S))(S(KS)))))))(S(S(K(S(KS)(S(KS))))(S(K(S(K(S(K(S(K(SS(KK)))K))S))(S(SKK))))K)))))K))K))K))))K))K))K))K))K))))K))K))K))K))K))K))K)))K))K))K))K))K))K))K))K))K
S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KK)K))K))K))K))K))K))K))))K))S))(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))))))))(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S(KK)K))K))K))K))))K))S))(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))))))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(S(KK)K))))))))(S(K(S(K(SS(KK)))K))S)))))K))S))K))S))K))S))K))S))(S(KS))))(S(K(S(K(S(K(S(K(SS(KK)))K))S))(S(SKK))))K))
K(S(K(S(KK)(S(K(S(KK)(S(K(S(K(S(KK)K))K)))))))))
S(K(S(K(S(KK)(S(K(S(K(S(K(S(KK)(S(K(S(K(S(K(S(KK)(S(K(S(K(S(K(S(KK)(S(K(S(K(S(K(S(KK)(S(KK))))(S(SKK))))K)))))(S(SKK))))K)))))(S(SKK))))K)))))(S(SKK))))K)))))(S(SKK))))K
S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KK)(S(K(S(K(S(K(S(K(S(KK)K))K))K))K)))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))(S(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(K(S(KS)(S(KS))))(S(S(K(S(KS)(S(SKK))))K))))K))K))))K))K))K))))K))K))K))K))))K))K))K))K))K

3

8486 S, K, I, W kullanarak

açıklama

(Bölüm 18'de tarif edilen, örneğin, standart bir algoritma için Mock Bülbülü ), dört olgu kullanır bağdaştırıcılarla tekabül eden S, K, I = SKKve basit bir sol ilişki. Bence Christian'ın cevabı budur. Bu yeterlidir, ancak mutlaka optimal değildir ve 10 birleştiriciye kadar sabit kodlamaya izin verdiğimiz için 7 seçenek bırakır.

Diğer iyi bilinen birleştirici birleştiriciler

B x y z = x (y z)
C x y z = x z y
W x y = x y y

birlikte K, tam bir temel oluşturur . SK'da bunlar

B = S (K S) K
C = S (S (K (S (K S) K)) S) (K K)
W = S S (S K)

ve SKIkurallar için bu aynı ifadeleri türetmek Bve Cfakat için Wonlar türetmek S S (K (S K K)). Bu nedenle Wözel bir durum olarak uygulamayı seçtim .

Program (CJam)

e# A tests whether argument is an array
{W=!!}:A;

e# F "flattens" an expression by removing unnecessary parentheses, although if the expression is a primitive
e# it actually wraps it in an array
{
  e# A primitive is already flat, so we only need to process arrays
  _A{
    ee{
      ~
      e# Stack: ... index elt
      e# First recurse to see how far that simplifies the element
      F
      e# If it's an array...
      _A{
        e# ... we can drop a level of nesting if either it's the first one (since combinator application
        e# is left-associative) or if it's a one-element array
        _,1=@!|{
          e# The tricky bit is that it might be a string, so we can't just use ~
          {}/
        }*
      }{
        \;
      }?
    }%
  }{a}?
}:F;


qN%{

e# Parse line of input
"->=()"" [[[]"er']+~
e# Eliminate the appropriate variables in reverse order. E eliminates the variable currently stored in V.
\,:)W%{
  e# Flatten current expression
  F

  e# Identify cases; X holds the eXpression and is guaranteed to be non-primitive
  :X
  [
    XVa=                  e# [V]
    Xe_V&!                e# case V-free expression
    X)_A0{V=}?\e_V&!*     e# case array with exactly one V, which is the last element
    X_e_Ve=~)>[VV]=X,2>*  e# case array with exactly two Vs, which are the last two elements
  ]
  1#
  e# Corresponding combinators
  [
    {;"SKK"}              e# I
    {['K\]}               e# K
    {);}                  e# X (less that final V)
    {););['S 'S "SK"]\a+} e# W special-cased as SS(SK) because the general-case algorithm derives SS(K(SKK))
    {['S\)E\E\]}          e# S (catch-all case)
  ]=~
}:EfV

e# Format for output
F
{
  _A{
    '(\{P}%')
  }*
}:P%

oNo}/

Çevrimiçi test takımı

Üretilen çıktılar:

S(KS)K
S(S(KS)(S(KK)S))(KK)
S(K(SS))(S(KK)K)
S(S(KS)(S(KK)(S(KS)(S(K(S(SKK)))K))))(KK)
S(K(S(K(SS(SK)))))(S(K(SS(SK)))(S(SKK)(SKK)))
KK
S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K)
S(S(KS)(S(K(S(KS)))(S(S(KS)(S(KK)(S(KS)K)))(K(S(S(KS)(S(K(S(SKK)))K))(K(SKK)))))))(K(S(KK)(S(SKK)(SKK))))
S(K(S(KK)))(S(K(S(S(SKK)(SKK))))K)
K(SKK)
S(K(S(S(KS)(S(KS)))))(S(KK)(S(KK)K))
S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))(S(K(SS))(S(KK)K))))))(K(S(KK)K))
S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(S(KS)(S(KK)(S(KS)(S(K(S(SKK)))K))))(KK))))))(K(KK))
S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(K(S(SKK)))K)))))(K(KK))
S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)K)))))(K(S(KS)K))
S(K(S(KS)))(S(KK))
S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)K)))))(K(S(S(KS)(S(K(S(KS)))(S(S(KS)(S(KK)(S(KS)K)))(K(S(S(KS)(S(S(KS)K)(K(S(SKK)(SKK)))))K)))))(S(KK)K)))))))(S(KK)(S(KK)K))
S(KK)(S(KK))
KK
S(KK)(S(KK)(S(S(KS)K)(S(K(S(SKK)))(S(K(S(SKK)))K))))
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K))))))(S(KK)(S(KK)K))
S(KK)
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(KS))))))))(S(KK)(S(KK)(S(KK)K)))
S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(KS)))))(S(KK)(S(KK)K))))))))(K(S(KK)(S(KK)K)))
S(KS)(S(KK)(S(KS)K))
S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(SKK)(SKK)))))))))(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(SKK)))))))(S(K(S(K(S(KK)))))(S(K(S(SKK)))K))))))(S(K(S(KK)))(S(K(S(KK)))(S(K(S(SKK)))K))))))))))(K(K(KK)))
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K))))))(S(KK)(S(KK)K))))))))(S(KK)(S(KK)(S(KK)K)))
K(S(KK))
S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(KS)))))(S(KK)(S(KK)K))))))))(K(S(KK)(S(KK)K))))))))))(K(K(S(KK)(S(KK)K))))
S(KK)(S(K(S(KK)))(S(K(S(KK)))))
K(S(KK)(S(KK)))
S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(KK))))))))))(K(S(K(S(KK)))(S(S(KS)(S(KK)(S(KS)K)))(K(S(K(S(SKK)))K)))))
S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(KK)))))(S(K(S(K(S(KS)))))(S(S(KS)(S(KK)(S(KS)(S(KS)))))(K(S(KK)K))))))))(K(K(KK)))
S(K(S(K(S(KK)))))(S(K(S(KK))))
S(K(S(K(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(SKK)))))(S(K(S(KK)))(S(K(S(SKK)))K)))))))))))(S(K(S(K(S(KK)))))(S(K(S(K(S(KK)))))(S(K(S(K(S(KK)))))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K)))))
S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(KK))))))))))(K(S(K(S(KK)))(S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(K(S(SKK)))K))))))(K(S(K(S(KK)))(S(K(S(SKK)))K))))))))))))))(K(K(K(K(KK)))))
S(KK)(S(K(S(KK)))(S(K(S(KK)))(S(K(S(KK)))(SS(SK)))))
K(S(K(S(KK)))(S(K(S(KK)))))
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K))))))(S(KK)(S(KK)K))))))))(S(KK)(S(KK)(S(KK)K))))))))))(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K)))))
S(K(S(KK)))(S(K(S(K(S(KK)))))(S(K(S(K(S(KK)))))(S(K(S(K(S(KK)))))(S(KS)K))))
S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)K)))))))))))(K(S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(S(KS)(S(KK)(S(KS)K)))))))(S(K(S(KK)))(S(S(KS)(S(KK)(S(KS)K)))(K(S(K(S(SKK)))K)))))))))))(K(K(S(KK)(S(KK)K))))))
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K))))))(S(KK)(S(KK)K))))))))(S(KK)(S(KK)(S(KK)K))))))))))(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K))))))
K(K(K(K(K(S(KK)(S(KK)(S(S(KS)(SSK))(K(SKK)))))))))
S(KK)(S(K(S(KK)))(S(K(S(KK)))(S(K(S(KK)))(S(K(S(KK)))(S(KK))))))
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K))))))(S(KK)(S(KK)K))))))))(S(KK)(S(KK)(S(KK)K))))))))))(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K)))))))
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))))(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(KK)))))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(K(S(KS)))(S(S(KS)(S(KK)(S(KS)(S(K(S(SKK)))K))))(KK))))))(S(KK)(S(KK)K))))))))(K(K(S(KK)K))))))))))(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))(K(K(K(S(KK)(S(KK)K))))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))))))(K(K(K(K(S(KK)(S(KK)(S(KK)K))))))))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K))))))))
S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))))))(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))))(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(K(S(KS)))(S(S(KS)(S(KK)(S(KS)(S(K(S(SKK)))K))))(KK))))))))))))(K(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(KK)))))))(S(S(KS)(S(KK)S))(KK))))))))))))))(K(K(K(K(S(KK)(S(KK)K))))))))))))))))(K(K(K(K(K(S(KK)(S(KK)K))))))))))))))))))(K(K(K(K(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))))))))))(K(K(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K)))))))))
K(S(K(S(KK)))(S(K(S(K(S(KK)))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(KK))))))))))
S(KK)(S(K(S(KK)))(S(K(S(K(S(KK)))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(K(S(KK)))))))))))(S(K(S(K(S(K(S(K(S(K(S(SKK)))))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(SKK)))))))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(SKK)))))))(S(K(S(K(S(KK)))))(S(K(S(K(S(SKK)))))(S(K(S(KK)))(S(K(S(SKK)))K))))))))))))))
S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K))))))(S(KK)(S(KK)K))))))))(S(KK)(S(KK)(S(KK)K))))))))))(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.