Ekleme için süperoptimizatör uygulayın


11

Görev, bitlerin toplamı için küçük mantıksal formüller bulabilen kod yazmaktır.

Genel zorluk, kodunuzun y ikili 0/1 değişkenlerinin toplamının x değerine eşit olup olmadığını kontrol etmek için mümkün olan en küçük öneri mantıksal formülünü bulmasıdır. X1, x2, x3, x4 vb. Değişkenlerini çağıralım. İfadeniz, toplamla eşdeğer olmalıdır. Yani, mantıksal formül yalnızca toplam x'e eşitse doğru olmalıdır.

İşte başlamak için saf bir yol. Y = 15 ve x = 5 deyin. 5 değişken seçmenin 3003 farklı yolunu seçin ve her biri için bu değişkenlerin AND'ini VE kalan değişkenlerin olumsuzlanmasını AND VE ile yeni bir cümle oluşturun. Toplam 45054 maliyetle her biri tam olarak 15 olan 3003 maddeyle sonuçlanırsınız.

Cevabınız, python'a yapıştırılabilecek bu tür bir mantıksal ifade olmalı, diyelim ki test edebilirim. İki kişi aynı boyut ifadesini alırsa, en hızlı çalışan kod kazanır.

Çözümünüze yeni değişkenler tanıtabilirsiniz. Dolayısıyla bu durumda mantıksal formülünüz y ikili değişkeninden, x ve bazı yeni değişkenlerden oluşur. Tüm formül yalnızca ve ancak y değişkenlerinin toplamı x'e eşitse tatmin edici olacaktır.

Bir başlangıç ​​egzersizi olarak, bazı insanlar x = 2'ye eklenen y = 5 değişkenle başlamak isteyebilir. Saf yöntem daha sonra 50 maliyet verecektir.

Kod, girdi olarak iki y ve x değerini almalı ve formülü ve çıktıyı çıktı olarak almalıdır. Bir çözümün maliyeti, çıktısında sadece değişkenlerin ham sayısıdır. Yani (a or b) and (!a or c) 4. olarak sayar sadece izin operatörleri and, orve not.

Güncelleme Bu sorunu x = 1 olduğunda, en azından teoride çözmek için akıllı bir yöntem olduğu ortaya çıktı .


1
Bu konu dışı. Dediğiniz gibi: bu soru mantıklı bir ifadeyi optimize etmekle ilgilidir. Herhangi bir şekilde bir programlama zorluğu / bulmaca değil.
shiona

@shiona Zorluk, bunu yapmak için yeterince hızlı çalışan akıllı bir yol düşünmektir. Belki bunu daha açık hale getirmek için yeniden söylemeliyim. Ben bir süper hızlandırıcı yazmak için bir meydan okuma gibi düşünüyorum.

1
Lütfen daha kesin bir şekilde "boyut" tanımlayın. Açıklamanız NOT'un sayılmadığını gösteriyor. Yoksa sadece ham değişken olumsuzlaması sayılmaz mı? Her ikili VE / VEYA bir olarak sayılır?
Keith Randall

1
Yeni değişkenlerin getirilmesi puanla nasıl çalışacak? Diyelim ki izin vermek istiyorum z[0] = y[0] and y[1], bunun nasıl belirtilmesini istersiniz?
Kaya

1
@Lembik pdf bağlantısı için teşekkürler, şimdi anladığımı düşünüyorum. Değişkeni z[0]temsil etmek istiyorsanız, y[0] or y[1]o zaman ben sadece (y[0] or y[1]) or not z[0](veya izin verilen 3 operatörleri kullanarak herhangi bir eşdeğer ifade) gibi bir cümle tanıtmak gerekir .
Kaya

Yanıtlar:


8

Python, 644

Basit bir özyinelemeli denklem oluşturucu. Slistesinde IFF karşılandığı bir denklem oluşturur varskadar ekler total.

Yapılması gereken bazı bariz iyileştirmeler var. Örneğin, 15/5 çıktısında görünen birçok ortak alt ifade vardır.

def S(vars, total):
    # base case
    if total == 0:
        return "(" + " and ".join("not " + x for x in vars) + ")"
    if total == len(vars):
        return "(" + " and ".join(vars) + ")"

    # recursive case
    n = len(vars)/2
    clauses = []
    for s in xrange(total+1):
        if s > n or total-s > len(vars)-n: continue
        a = S(vars[:n], s)
        b = S(vars[n:], total-s)
        clauses += ["(" + a + " and " + b + ")"]
    return "(" + " or ".join(clauses) + ")"

def T(n, total):
    e = S(["x[%d]"%i for i in xrange(n)], total)
    print "equation", e
    print "score", e.count("[")

    # test it
    for i in xrange(2**n):
        x = [i/2**k%2 for k in xrange(n)]
        if eval(e) != (sum(x) == total):
            print "wrong", x

T(2, 1)
T(5, 2)
T(15, 5)

üretir:

equation (((not x[0]) and (x[1])) or ((x[0]) and (not x[1])))
score 4
equation (((not x[0] and not x[1]) and (((not x[2]) and (x[3] and x[4])) or ((x[2]) and (((not x[3]) and (x[4])) or ((x[3]) and (not x[4])))))) or ((((not x[0]) and (x[1])) or ((x[0]) and (not x[1]))) and (((not x[2]) and (((not x[3]) and (x[4])) or ((x[3]) and (not x[4])))) or ((x[2]) and (not x[3] and not x[4])))) or ((x[0] and x[1]) and (not x[2] and not x[3] and not x[4])))
score 27
equation (((not x[0] and not x[1] and not x[2] and not x[3] and not x[4] and not x[5] and not x[6]) and (((((not x[7] and not x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (not x[9] and not x[10]))) and (x[11] and x[12] and x[13] and x[14])) or ((((not x[7] and not x[8]) and (x[9] and x[10])) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((x[7] and x[8]) and (not x[9] and not x[10]))) and (((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (x[13] and x[14])) or ((x[11] and x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))))) or ((((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (x[9] and x[10])) or ((x[7] and x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10]))))) and (((not x[11] and not x[12]) and (x[13] and x[14])) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((x[11] and x[12]) and (not x[13] and not x[14])))) or ((x[7] and x[8] and x[9] and x[10]) and (((not x[11] and not x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (not x[13] and not x[14])))))) or ((((not x[0] and not x[1] and not x[2]) and (((not x[3] and not x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (not x[5] and not x[6])))) or ((((not x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2])))) or ((x[0]) and (not x[1] and not x[2]))) and (not x[3] and not x[4] and not x[5] and not x[6]))) and (((not x[7] and not x[8] and not x[9] and not x[10]) and (x[11] and x[12] and x[13] and x[14])) or ((((not x[7] and not x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (not x[9] and not x[10]))) and (((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (x[13] and x[14])) or ((x[11] and x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))))) or ((((not x[7] and not x[8]) and (x[9] and x[10])) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((x[7] and x[8]) and (not x[9] and not x[10]))) and (((not x[11] and not x[12]) and (x[13] and x[14])) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((x[11] and x[12]) and (not x[13] and not x[14])))) or ((((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (x[9] and x[10])) or ((x[7] and x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10]))))) and (((not x[11] and not x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (not x[13] and not x[14])))) or ((x[7] and x[8] and x[9] and x[10]) and (not x[11] and not x[12] and not x[13] and not x[14])))) or ((((not x[0] and not x[1] and not x[2]) and (((not x[3] and not x[4]) and (x[5] and x[6])) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((x[3] and x[4]) and (not x[5] and not x[6])))) or ((((not x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2])))) or ((x[0]) and (not x[1] and not x[2]))) and (((not x[3] and not x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (not x[5] and not x[6])))) or ((((not x[0]) and (x[1] and x[2])) or ((x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2]))))) and (not x[3] and not x[4] and not x[5] and not x[6]))) and (((not x[7] and not x[8] and not x[9] and not x[10]) and (((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (x[13] and x[14])) or ((x[11] and x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))))) or ((((not x[7] and not x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (not x[9] and not x[10]))) and (((not x[11] and not x[12]) and (x[13] and x[14])) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((x[11] and x[12]) and (not x[13] and not x[14])))) or ((((not x[7] and not x[8]) and (x[9] and x[10])) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((x[7] and x[8]) and (not x[9] and not x[10]))) and (((not x[11] and not x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (not x[13] and not x[14])))) or ((((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (x[9] and x[10])) or ((x[7] and x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10]))))) and (not x[11] and not x[12] and not x[13] and not x[14])))) or ((((not x[0] and not x[1] and not x[2]) and (((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (x[5] and x[6])) or ((x[3] and x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))))) or ((((not x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2])))) or ((x[0]) and (not x[1] and not x[2]))) and (((not x[3] and not x[4]) and (x[5] and x[6])) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((x[3] and x[4]) and (not x[5] and not x[6])))) or ((((not x[0]) and (x[1] and x[2])) or ((x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2]))))) and (((not x[3] and not x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (not x[5] and not x[6])))) or ((x[0] and x[1] and x[2]) and (not x[3] and not x[4] and not x[5] and not x[6]))) and (((not x[7] and not x[8] and not x[9] and not x[10]) and (((not x[11] and not x[12]) and (x[13] and x[14])) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((x[11] and x[12]) and (not x[13] and not x[14])))) or ((((not x[7] and not x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (not x[9] and not x[10]))) and (((not x[11] and not x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (not x[13] and not x[14])))) or ((((not x[7] and not x[8]) and (x[9] and x[10])) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((x[7] and x[8]) and (not x[9] and not x[10]))) and (not x[11] and not x[12] and not x[13] and not x[14])))) or ((((not x[0] and not x[1] and not x[2]) and (x[3] and x[4] and x[5] and x[6])) or ((((not x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2])))) or ((x[0]) and (not x[1] and not x[2]))) and (((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (x[5] and x[6])) or ((x[3] and x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))))) or ((((not x[0]) and (x[1] and x[2])) or ((x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2]))))) and (((not x[3] and not x[4]) and (x[5] and x[6])) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((x[3] and x[4]) and (not x[5] and not x[6])))) or ((x[0] and x[1] and x[2]) and (((not x[3] and not x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (not x[5] and not x[6]))))) and (((not x[7] and not x[8] and not x[9] and not x[10]) and (((not x[11] and not x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (not x[13] and not x[14])))) or ((((not x[7] and not x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (not x[9] and not x[10]))) and (not x[11] and not x[12] and not x[13] and not x[14])))) or ((((((not x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2])))) or ((x[0]) and (not x[1] and not x[2]))) and (x[3] and x[4] and x[5] and x[6])) or ((((not x[0]) and (x[1] and x[2])) or ((x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2]))))) and (((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (x[5] and x[6])) or ((x[3] and x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))))) or ((x[0] and x[1] and x[2]) and (((not x[3] and not x[4]) and (x[5] and x[6])) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((x[3] and x[4]) and (not x[5] and not x[6]))))) and (not x[7] and not x[8] and not x[9] and not x[10] and not x[11] and not x[12] and not x[13] and not x[14])))
score 644

Bu çok güzel. Sizce çözümler ne kadar küçük olabilir?

@Lembik: Bunu gerçekten düşünmedim. Sık kullanılan alt ifadeler için yeni değişkenler tanımlamanız gerekir. Örneğin not x[0] and not x[1] and not x[2], 15/5 ifadesinde 5 kez görünür.
Keith Randall

2

Bunu bir yorum yapardım, ama itibarım yok. Kwon & Klieber'in ("Komutan" kodlaması olarak bilinir) sonuçlarının k = 1 için k> = 2 için Frisch ve ark. "At-Most-k Kısıtlamasının SAT Kodlamaları." Sorduğunuz şey, önemsiz olan At-Least-k'yi garanti etmek için ek bir madde içeren AM-k kısıtlamasının özel bir durumu, sadece tüm değişkenlerin AM-k kısıtlamasına ayrılması. Frisch kısıtlama modellemesinde önde gelen bir araştırmacıdır, bu yüzden [(2k + 2 C k + 1) + (2k + 2 C k-1)] * n / 2'nin, cümlecikleri ve eklenecek yeni değişken sayısı için k * n / 2. Ayrıntılar, bu kodlamanın nasıl oluşturulacağına ilişkin talimatlarla birlikte alıntılanan kağıtta bulunmaktadır. O' Bu formülü oluşturmak için bir program yazmak oldukça basit ve bence böyle bir çözüm, şimdilik bulacağınız diğer çözümlerle rekabet edebilir. HTH.


Teşekkür ederim. Bunun, bazı kapsamlı süper optimizasyonların mümkün olabileceği küçük sorun boyutları için maliyet ölçümüm için hala en iyisi olup olmadığını görmek ilginç olacaktır. Umarım burada birisi bunu deneyecektir.
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.