Kaç tane tekerlek olduğunu belirle


23

Matematiksel olmayan açıklama

Bu, geçmişinizden bağımsız olarak ulaşılabilir olması gereken bir açıklamadır. Maalesef biraz matematik gerektiriyor, ancak orta okul düzeyinde bir anlayışa sahip çoğu insan için anlaşılabilir olmalı

İşaretçi dizisi, bir (n + 1) = a (na (n)) olan herhangi bir dizilimdir .

Ne anlama geldiğini anlamak için bu formülü biraz ayıralım. Bu sadece son terimi incelediğimiz sıradaki bir sonraki terimi bulmak, birçok adımı geri atmak ve bulduğumuz terimi kopyalamak demektir. Mesela, şu ana kadar olan bir dizimiz olsaydı

... 3 4 4 4 3 ?

Biz 3 adım geri alırdık 3

... 3 4 4 4 3 ?
      ^

Sonucumuzu yapiyoruz 4.

Şimdi normalde bu oyunu her iki yönde de sınırsız olan bir kasetle oynuyoruz, ancak belirli bir adımdan sonra dizinin başlangıcına geri döndüğümüz bir tekerlek üzerinde de oynayabiliriz.

Örneğin burada dizinin bir görselleştirme [1,3,1,3,1,3]

tekerlek

Şimdi, tekerleğin içindeki hücrelerin sayısını ( n ) geçen bir tekerleğin x sayısının x mod n olabileceğini fark edebiliriz çünkü tekerleğin etrafındaki her devre hiçbir şey yapmamakla aynıdır. Bu yüzden sadece üyelerin tekerleğin boyutundan daha az olduğu tekerlekleri dikkate alacağız.

Matematik açıklaması

İşaretçi dizisi, bir (n + 1) = a (na (n)) olan herhangi bir dizilimdir . Genellikle bunlar tamsayılardan tamsayılara kadar tanımlanır, ancak bu tanımda ihtiyaç duyulan tek şeyin bir halefi işlev ve bir ters işlev olduğunu fark edebilirsiniz. Tüm döngüsel grupların her ikisine de sahip olduğu için, herhangi bir döngüsel gruptaki işaretçi sekanslarını düşünebiliriz.

Bu tür fonksiyonlar aramaya başlarsak, her bir fonksiyon için birkaç benzer fonksiyon olduğunu fark edeceğiz. Üzerinde Örneğin Z 3 Aşağıdaki 3 şartlarımıza uyacak tüm fonksiyonlar bulunmaktadır.

f1 : [1,2,2]
f2 : [2,1,2]
f3 : [2,2,1]

(Burada bir liste sonucun sadece girilen listeyle indekslenmesi için bir işlevi temsil etmek için kullanılır)

Bu fonksiyonların hepsinin birbirinin "dönmesi" olduğunu görebiliriz. Ben rotasyon ile ne demek resmileştirmek için, bir fonksiyon b bir rotasyon olduğunu bir IFF

denklem 1

Burada yer alan matematik biraz olsun Şimdi, eğer biz aslında eğer gösterebilir bir işaretçi dizisidir her rotasyon bir zamanda bir işaretçi dizisidir. Böylece aslında birbirlerinin dönüşleri olan herhangi bir diziyi eşdeğer olarak göreceğiz.

Görev

Verilen n boyutu olan işaretçi dizilerinin sayısı, giriş çıkış olarak n .

Bu bu nedenle cevaplar daha az byte'ın daha iyi olmasıyla byte olarak puanlanacaktır.

testcases

Şu anda bu test durumları biraz eksik, bunları üretmek için bir bilgisayar programım var, ancak bunu yapmak oldukça yavaş. Herhangi biri daha büyük testlere katkıda bulunmak istiyorsa (doğrulayabiliyorlarsa) bunu yapmakta özgürler. Bazı testlerin altında bulduğum tüm fonksiyonların bir listesi var, bu hata ayıklama için faydalı olabilir. Karakter limitleri nedeniyle bunları daha büyük olanlar için ekleyemiyorum.

Eğer kodları burada kullanmak için kullandıysam ,

1 -> 1
[[0]]
2 -> 2
[[1,1],[0,0]]
3 -> 4
[[2,2,2],[2,2,1],[1,1,1],[0,0,0]]
4 -> 7
[[3,3,3,3],[3,3,3,2],[2,2,2,2],[3,3,3,1],[3,1,3,1],[1,1,1,1],[0,0,0,0]]
5 -> 12
[[4,4,4,4,4],[4,4,4,4,3],[3,3,3,3,3],[4,4,4,4,2],[4,3,4,4,2],[2,2,2,2,2],[4,4,4,4,1],[4,3,4,4,1],[4,4,2,4,1],[4,4,1,4,1],[1,1,1,1,1],[0,0,0,0,0]]
6 -> 35
[[5,5,5,5,5,5],[5,5,5,5,5,4],[5,5,4,5,5,4],[4,4,4,4,4,4],[5,5,5,5,5,3],[5,4,5,5,5,3],[5,5,5,3,5,3],[5,3,5,3,5,3],[3,3,3,3,3,3],[5,5,5,5,5,2],[5,4,5,5,5,2],[5,3,5,5,5,2],[5,5,4,5,5,2],[5,5,2,5,5,2],[5,5,2,5,2,2],[5,3,2,5,2,2],[5,2,2,5,2,2],[4,2,2,4,2,2],[2,2,2,2,2,2],[5,5,5,5,5,1],[5,4,5,5,5,1],[5,3,5,5,5,1],[5,5,4,5,5,1],[5,5,2,5,5,1],[5,5,1,5,5,1],[5,5,5,3,5,1],[5,3,5,3,5,1],[5,5,5,2,5,1],[5,5,5,1,5,1],[5,3,5,1,5,1],[5,1,5,1,5,1],[3,1,3,1,3,1],[2,2,1,2,2,1],[1,1,1,1,1,1],[0,0,0,0,0,0]]
7 -> 80
[[6,6,6,6,6,6,6],[6,6,6,6,6,6,5],[6,6,6,5,6,6,5],[5,5,5,5,5,5,5],[6,6,6,6,6,6,4],[6,5,6,6,6,6,4],[6,6,6,5,6,6,4],[6,6,6,6,4,6,4],[6,5,6,6,4,6,4],[6,4,6,6,6,4,4],[4,4,4,4,4,4,4],[6,6,6,6,6,6,3],[6,5,6,6,6,6,3],[6,4,6,6,6,6,3],[6,6,5,6,6,6,3],[6,6,4,6,6,6,3],[5,6,6,5,6,6,3],[6,6,6,6,4,6,3],[6,5,6,6,4,6,3],[6,6,4,6,4,6,3],[6,4,4,6,4,6,3],[6,6,6,6,3,6,3],[6,6,4,6,3,6,3],[3,3,3,3,3,3,3],[6,6,6,6,6,6,2],[6,5,6,6,6,6,2],[6,4,6,6,6,6,2],[6,3,6,6,6,6,2],[6,6,5,6,6,6,2],[6,6,4,6,6,6,2],[6,6,6,5,6,6,2],[6,4,6,5,6,6,2],[6,3,6,5,6,6,2],[6,6,6,3,6,6,2],[6,4,6,3,6,6,2],[6,3,6,3,6,6,2],[6,6,6,2,6,6,2],[6,6,2,6,6,3,2],[6,6,6,2,6,2,2],[6,6,4,2,6,2,2],[6,6,3,2,6,2,2],[2,2,2,2,2,2,2],[6,6,6,6,6,6,1],[6,5,6,6,6,6,1],[6,4,6,6,6,6,1],[6,3,6,6,6,6,1],[6,6,5,6,6,6,1],[6,6,4,6,6,6,1],[6,6,2,6,6,6,1],[6,6,6,5,6,6,1],[6,4,6,5,6,6,1],[6,3,6,5,6,6,1],[6,6,6,3,6,6,1],[6,4,6,3,6,6,1],[6,3,6,3,6,6,1],[6,6,6,2,6,6,1],[6,6,6,1,6,6,1],[6,6,6,6,4,6,1],[6,5,6,6,4,6,1],[6,3,6,6,4,6,1],[6,6,4,6,4,6,1],[6,4,4,6,4,6,1],[6,6,2,6,4,6,1],[6,6,1,6,4,6,1],[6,6,6,6,3,6,1],[6,6,4,6,3,6,1],[6,6,2,6,3,6,1],[6,6,1,6,3,6,1],[6,6,6,6,2,6,1],[6,5,6,6,2,6,1],[6,3,6,6,2,6,1],[6,6,6,6,1,6,1],[6,5,6,6,1,6,1],[6,3,6,6,1,6,1],[6,6,4,6,1,6,1],[6,6,2,6,1,6,1],[6,6,1,6,1,6,1],[3,6,1,6,6,3,1],[1,1,1,1,1,1,1],[0,0,0,0,0,0,0]]
8 -> 311
[[7,7,7,7,7,7,7,7],[7,7,7,7,7,7,7,6],[7,7,7,6,7,7,7,6],[7,7,7,7,6,7,7,6],[6,6,6,6,6,6,6,6],[7,7,7,7,7,7,7,5],[7,6,7,7,7,7,7,5],[7,7,7,6,7,7,7,5],[7,7,7,5,7,7,7,5],[7,7,7,7,6,7,7,5],[7,6,7,7,6,7,7,5],[7,7,7,7,7,5,7,5],[7,6,7,7,7,5,7,5],[7,7,7,5,7,5,7,5],[7,5,7,5,7,5,7,5],[7,5,7,7,7,7,5,5],[7,5,7,6,7,7,5,5],[7,5,7,7,7,6,5,5],[5,5,5,5,5,5,5,5],[7,7,7,7,7,7,7,4],[7,6,7,7,7,7,7,4],[7,5,7,7,7,7,7,4],[7,7,6,7,7,7,7,4],[7,7,5,7,7,7,7,4],[6,7,7,6,7,7,7,4],[5,5,7,5,7,7,7,4],[7,7,7,7,6,7,7,4],[7,6,7,7,6,7,7,4],[7,7,5,7,6,7,7,4],[7,7,7,7,4,7,7,4],[7,6,7,7,4,7,7,4],[7,7,7,7,7,5,7,4],[7,6,7,7,7,5,7,4],[7,5,7,7,7,5,7,4],[7,7,6,7,7,5,7,4],[7,7,4,7,7,5,7,4],[7,7,7,7,7,4,7,4],[7,7,6,7,7,4,7,4],[7,7,4,7,7,4,7,4],[7,4,7,7,7,7,5,4],[7,4,7,7,4,7,5,4],[4,4,4,4,4,4,4,4],[7,7,7,7,7,7,7,3],[7,6,7,7,7,7,7,3],[7,5,7,7,7,7,7,3],[7,4,7,7,7,7,7,3],[7,7,6,7,7,7,7,3],[7,7,5,7,7,7,7,3],[7,7,4,7,7,7,7,3],[7,7,7,6,7,7,7,3],[7,5,7,6,7,7,7,3],[7,4,7,6,7,7,7,3],[7,7,7,5,7,7,7,3],[7,5,7,5,7,7,7,3],[7,4,7,5,7,7,7,3],[7,7,7,3,7,7,7,3],[6,7,7,7,6,7,7,3],[6,7,7,3,6,7,7,3],[7,7,7,7,7,5,7,3],[7,6,7,7,7,5,7,3],[7,5,7,7,7,5,7,3],[7,7,6,7,7,5,7,3],[7,7,4,7,7,5,7,3],[7,7,7,5,7,5,7,3],[7,5,7,5,7,5,7,3],[7,7,5,5,7,5,7,3],[7,6,5,5,7,5,7,3],[7,4,5,5,7,5,7,3],[7,7,7,3,7,5,7,3],[7,5,7,3,7,5,7,3],[7,7,7,7,7,4,7,3],[7,7,6,7,7,4,7,3],[7,7,4,7,7,4,7,3],[7,7,7,5,7,4,7,3],[7,7,7,3,7,4,7,3],[7,7,7,7,7,3,7,3],[7,6,7,7,7,3,7,3],[7,5,7,7,7,3,7,3],[7,7,7,5,7,3,7,3],[7,5,7,5,7,3,7,3],[7,7,7,3,7,3,7,3],[7,5,7,3,7,3,7,3],[7,3,7,3,7,3,7,3],[7,3,5,7,7,7,5,3],[7,3,5,3,7,3,5,3],[5,3,5,3,5,3,5,3],[7,7,7,3,7,7,3,3],[7,5,7,3,7,7,3,3],[7,4,7,3,7,7,3,3],[7,7,4,3,7,7,3,3],[7,7,3,3,7,7,3,3],[7,7,7,3,7,6,3,3],[7,5,7,3,7,6,3,3],[7,7,4,3,7,6,3,3],[7,7,3,3,7,6,3,3],[7,6,3,3,7,6,3,3],[7,7,3,3,7,3,3,3],[7,6,3,3,7,3,3,3],[7,4,3,3,7,3,3,3],[7,3,3,3,7,3,3,3],[6,3,3,3,6,3,3,3],[5,3,3,3,5,3,3,3],[3,3,3,3,3,3,3,3],[7,7,7,7,7,7,7,2],[7,6,7,7,7,7,7,2],[7,5,7,7,7,7,7,2],[7,4,7,7,7,7,7,2],[7,3,7,7,7,7,7,2],[7,7,6,7,7,7,7,2],[7,7,5,7,7,7,7,2],[7,7,4,7,7,7,7,2],[7,7,7,6,7,7,7,2],[7,5,7,6,7,7,7,2],[7,4,7,6,7,7,7,2],[7,3,7,6,7,7,7,2],[7,7,7,5,7,7,7,2],[7,5,7,5,7,7,7,2],[7,4,7,5,7,7,7,2],[7,3,7,5,7,7,7,2],[7,7,7,3,7,7,7,2],[7,5,7,3,7,7,7,2],[7,4,7,3,7,7,7,2],[7,3,7,3,7,7,7,2],[7,7,7,2,7,7,7,2],[7,7,7,7,6,7,7,2],[7,6,7,7,6,7,7,2],[7,4,7,7,6,7,7,2],[7,3,7,7,6,7,7,2],[7,7,5,7,6,7,7,2],[7,7,4,7,6,7,7,2],[7,7,7,7,4,7,7,2],[7,6,7,7,4,7,7,2],[7,4,7,7,4,7,7,2],[7,3,7,7,4,7,7,2],[7,7,5,7,4,7,7,2],[7,7,4,7,4,7,7,2],[7,5,4,7,4,7,7,2],[7,7,7,7,3,7,7,2],[7,7,5,7,3,7,7,2],[7,7,4,7,3,7,7,2],[7,7,7,7,2,7,7,2],[7,6,7,7,2,7,7,2],[7,4,7,7,2,7,7,2],[7,3,7,7,2,7,7,2],[4,7,7,7,7,4,7,2],[4,7,6,7,7,4,7,2],[4,7,4,7,7,4,7,2],[4,7,7,5,7,4,7,2],[4,7,7,2,7,4,7,2],[3,3,7,7,7,3,7,2],[3,3,7,5,7,3,7,2],[3,3,7,7,4,3,7,2],[3,3,7,7,3,3,7,2],[3,3,7,6,3,3,7,2],[3,3,7,3,3,3,7,2],[3,3,7,2,3,3,7,2],[7,7,2,7,7,7,4,2],[7,7,2,7,4,7,4,2],[7,7,2,7,3,7,4,2],[7,7,7,2,7,7,3,2],[7,7,3,2,7,7,3,2],[7,4,7,2,4,7,3,2],[3,3,3,2,3,3,3,2],[7,7,7,7,2,7,2,2],[7,6,7,7,2,7,2,2],[7,4,7,7,2,7,2,2],[7,7,7,5,2,7,2,2],[7,4,7,5,2,7,2,2],[7,7,7,4,2,7,2,2],[7,4,7,4,2,7,2,2],[2,2,2,2,2,2,2,2],[7,7,7,7,7,7,7,1],[7,6,7,7,7,7,7,1],[7,5,7,7,7,7,7,1],[7,4,7,7,7,7,7,1],[7,3,7,7,7,7,7,1],[7,7,6,7,7,7,7,1],[7,7,5,7,7,7,7,1],[7,7,4,7,7,7,7,1],[7,7,2,7,7,7,7,1],[7,7,7,6,7,7,7,1],[7,5,7,6,7,7,7,1],[7,4,7,6,7,7,7,1],[7,3,7,6,7,7,7,1],[7,7,7,5,7,7,7,1],[7,5,7,5,7,7,7,1],[7,4,7,5,7,7,7,1],[7,3,7,5,7,7,7,1],[7,7,7,3,7,7,7,1],[7,5,7,3,7,7,7,1],[7,4,7,3,7,7,7,1],[7,3,7,3,7,7,7,1],[7,7,7,2,7,7,7,1],[7,7,7,1,7,7,7,1],[7,7,7,7,6,7,7,1],[7,6,7,7,6,7,7,1],[7,4,7,7,6,7,7,1],[7,3,7,7,6,7,7,1],[7,7,5,7,6,7,7,1],[7,7,4,7,6,7,7,1],[7,7,2,7,6,7,7,1],[7,7,7,7,4,7,7,1],[7,6,7,7,4,7,7,1],[7,4,7,7,4,7,7,1],[7,3,7,7,4,7,7,1],[7,7,5,7,4,7,7,1],[7,7,4,7,4,7,7,1],[7,5,4,7,4,7,7,1],[7,7,2,7,4,7,7,1],[7,4,7,2,4,7,7,1],[7,7,7,7,3,7,7,1],[7,7,5,7,3,7,7,1],[7,7,4,7,3,7,7,1],[7,7,2,7,3,7,7,1],[7,7,7,7,2,7,7,1],[7,6,7,7,2,7,7,1],[7,4,7,7,2,7,7,1],[7,3,7,7,2,7,7,1],[7,7,7,7,1,7,7,1],[7,6,7,7,1,7,7,1],[7,4,7,7,1,7,7,1],[7,3,7,7,1,7,7,1],[7,7,7,7,7,5,7,1],[7,6,7,7,7,5,7,1],[7,5,7,7,7,5,7,1],[7,3,7,7,7,5,7,1],[7,7,6,7,7,5,7,1],[7,7,4,7,7,5,7,1],[7,7,2,7,7,5,7,1],[7,7,1,7,7,5,7,1],[7,7,7,5,7,5,7,1],[7,5,7,5,7,5,7,1],[7,3,7,5,7,5,7,1],[7,7,5,5,7,5,7,1],[7,6,5,5,7,5,7,1],[7,4,5,5,7,5,7,1],[7,7,7,3,7,5,7,1],[7,5,7,3,7,5,7,1],[7,3,7,3,7,5,7,1],[7,7,7,2,7,5,7,1],[7,7,7,1,7,5,7,1],[7,5,7,1,7,5,7,1],[7,7,7,7,7,4,7,1],[7,7,6,7,7,4,7,1],[7,7,4,7,7,4,7,1],[7,7,2,7,7,4,7,1],[7,7,1,7,7,4,7,1],[7,7,7,5,7,4,7,1],[7,7,7,3,7,4,7,1],[7,7,7,2,7,4,7,1],[7,7,7,1,7,4,7,1],[7,7,4,7,2,4,7,1],[7,7,7,7,7,3,7,1],[7,6,7,7,7,3,7,1],[7,5,7,7,7,3,7,1],[7,3,7,7,7,3,7,1],[7,7,7,5,7,3,7,1],[7,5,7,5,7,3,7,1],[7,3,7,5,7,3,7,1],[7,7,7,3,7,3,7,1],[7,5,7,3,7,3,7,1],[7,3,7,3,7,3,7,1],[7,7,7,2,7,3,7,1],[7,7,7,1,7,3,7,1],[7,5,7,1,7,3,7,1],[7,3,7,1,7,3,7,1],[7,3,7,7,3,3,7,1],[7,3,7,6,3,3,7,1],[7,3,7,2,3,3,7,1],[7,7,7,7,7,2,7,1],[7,6,7,7,7,2,7,1],[7,5,7,7,7,2,7,1],[7,3,7,7,7,2,7,1],[7,7,6,7,7,2,7,1],[7,7,4,7,7,2,7,1],[7,7,2,7,7,2,7,1],[7,4,2,7,7,2,7,1],[7,7,1,7,7,2,7,1],[7,7,2,7,2,2,7,1],[7,5,2,7,2,2,7,1],[7,4,2,7,2,2,7,1],[7,7,7,7,7,1,7,1],[7,6,7,7,7,1,7,1],[7,5,7,7,7,1,7,1],[7,3,7,7,7,1,7,1],[7,7,6,7,7,1,7,1],[7,7,4,7,7,1,7,1],[7,7,2,7,7,1,7,1],[7,7,1,7,7,1,7,1],[7,7,7,5,7,1,7,1],[7,5,7,5,7,1,7,1],[7,3,7,5,7,1,7,1],[7,7,7,3,7,1,7,1],[7,5,7,3,7,1,7,1],[7,3,7,3,7,1,7,1],[7,7,7,2,7,1,7,1],[7,7,7,1,7,1,7,1],[7,5,7,1,7,1,7,1],[7,3,7,1,7,1,7,1],[7,1,7,1,7,1,7,1],[5,1,5,1,5,1,5,1],[4,7,1,7,7,7,4,1],[4,7,1,7,7,5,4,1],[3,7,7,1,7,7,3,1],[3,7,3,1,3,7,3,1],[3,5,7,1,7,5,3,1],[3,5,3,1,3,5,3,1],[3,3,3,1,3,3,3,1],[3,1,3,1,3,1,3,1],[1,1,1,1,1,1,1,1],[0,0,0,0,0,0,0,0]]
9 -> 1049
10 -> 4304

@HyperNeutrino tarafından hesaplanan son dava


1
Gerçekten iyi belgelenmiş bir mücadele için + 1'ken hala tam olarak anlamıyorum.
ElPedro

@ElPedro Hala neden emin değilseniz? Belki bu sorunun daha net olmasına yardımcı olabilirim.
Buğday Sihirbazı

Yanıtlar:


7

Jöle , 18 17 bayt

J_ịṙ1⁼
ṗṙ€RṂ€QÇ€S

Çevrimiçi deneyin!

Nasıl çalışır

ṗṙ€RṂ€QÇ€S  Main link. Argument: n

ṗ           Cartesian power; yield all vectors of n elements of [1, ..., n].
   R        Range; yield [1, ..., n].
 ṙ€         Rotate each vector 1, ..., and n units to the left.
    Ṃ€      Take the minimum of each array of rotations of the same vector.
      Q     Unique; deduplicate the resulting array.
            Since each vector is replaced by its lexicographically minimal
            rotation, no resulting vector will be a rotation of another vector.
       ǀ   Map the helper link over the remaining vectors.
            Vectors that represent pointer sequences map to 1, others to 0.
         S  Take the sum.


J_ịṙ1⁼      Helper link. Argument: v = (v1, ..., vn)

J           Indices; yield [1, ..., n].
 _          Subtract v, yielding [1 - v1, ..., n - vn].
  ị         Index into v, yielding [v(1 - v1), ..., v(n - vn)].
   ṙ1       Rotate the result one unit to the left.
     ⁼      Compare the result with v.

5

Python 2 , 162 156 152 146 143 bayt

lambda n:len({min(l[i:]+l[:i]for i in R(n))for l in product(*[R(n)]*n)if all(l[-~i-n]==l[i-l[i]]for i in R(n))})
from itertools import*
R=range

Çevrimiçi deneyin!

Az ya da çok kaba kuvvet:

  • Tüm permütasyonları oluşturur product(r,repeat=n)
  • Geçerli listeleri kontrol eder. all(l[-~i-n]==l[i-l[i]]for i in r)
  • Geçerli ızgaraların minimum (sözlükbilimsel) dönme kümesini oluşturur min(l[i:]+l[:i]for i in r)

Biraz kısa devre yapan özyinelemeli işlev:

Bu sürüm daha uzun, ancak tio.run'daf(10) ~ 19 saniye içinde hesaplayabiliyor

Makinemde buldum:

  • f(11) = 16920
  • f(12) = 78687

Python 2,209 bayt

lambda n:len(g(n,(-1,)*n))
r=range
g=lambda n,a,j=0:set()if any(len({-1,a[-~i-n],a[i-a[i]]})>2for i in r(j))else set.union(*[g(n,a[:j]+(i,)+a[j+1:],j+1)for i in r(n)])if j<n else{min(a[i:]+a[:i]for i in r(n))}

Çevrimiçi deneyin!

Açıklama:

f=lambda n:len(g(n,(-1,)*n)) #calls the recursive function, and gets length.
#The initial circle is all -1, and is built recursively
r=range
g=lambda n,a,j=0:
#if any of the indexes so far break the pointer rule (ignored if 'empty'), stop recursion.
if any(len({-1,a[-~i-n],a[i-a[i]]})>2for i in r(j))
    return set()
else
if j<n:
    #recursively call g with a+ all numbers in range ie.(a+[0], a+[1], ..)
    return set.union(*[g(n,a[:j]+(i,)+a[j+1:],j+1)for i in r(n)])
else # if recursion depth == n, we are done. Return the smallest (lexicographically) rotation.
    return {min(a[i:]+a[:i]for i in r(n))}

Elbette Python'un dizi indekslemesi, %n(ve birkaç parantezi) bırakabileceğiniz anlamına gelir.
Peter Taylor


3

CJam, 37

ri:M_m*{:XM,Xfm<:e<=M{(_X=-X=}%X=&},,

Çevrimiçi deneyin

Hemen hemen kaba kuvvet ve biraz sakar hissediyorum. 6'dan sonra çok yavaşlıyor p. Tekerlekleri yazdırmak için son virgül a ile değiştirin .


3

Pyth, 28 bayt

l{mS.>LdQf!fn@ThY@T-Y@TYUQ^U

Test odası

İlk önce uygun uzunluktaki tüm dizileri uygun elemanlarla üretiyoruz. İkinci olarak, herhangi bir imleç hatası olup olmadığını kontrol ederiz. Üçüncüsü, sıralanan tüm rotasyonları eşleyin. Dördüncü olarak, tekilleştirin ve sayın.


3

Haskell , 117 112 104 bayt

f k|x<-[1..k]=sum[1|y@(h:t)<-mapM(x<$f)x,t++[h]==[y!!mod(n-a)k|(n,a)<-zip x y],and[y<=drop n y++y|n<-x]]

Kaba kuvvet, büyük girdiler için oldukça yavaş. Çevrimiçi deneyin!

Laikoni sayesinde -5 bayt.

Ørjan Johansen sayesinde -5 bayt.


and[y<=drop i y++take i y|i<-x]bazı baytları kaydeder.
Laikoni

@Likonikon Yani öyle, teşekkürler!
Zgarb

(1) x<$fbir bayttan daha kısa \_->x. (2) Tembellik sayesinde n`drop`cycle y4 byte tasarruf sağlar drop n y++take n y.
Ørjan Johansen

@ ØrjanJohansen Teşekkürler, <$numara güzel. drop n y++yİkinci ipucu için daha kısa olduğu ortaya çıkıyor.
Zgarb

Neredeyse var Hm tailsdaha standart hile bir varyantı ile 4 böylece,: all(y<=)$scanr(:)y y.
Ørjan Johansen
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.