Quarto'da kaç tane çekiliş var?


9

Giriş

Bu zorluk Project Euler sorunlarına benzer . Aldattım çünkü aldatıcı derecede basit bir masa oyunu oynuyordum ve mekaniği hakkında basit bir soruyu cevaplamak için etkili bir çözüm bulamadım.

Quarto arka arkaya 4 eğlenceli bir çeşididir. 16 benzersiz parça ile 4'e 4 kartta oynanır (hiçbir parça kopyalanmaz). Her turda her oyuncu tahtaya 1 adet yerleştirir. Her parça 4 ikili özelliğe sahiptir (kısa / uzun, siyah / beyaz, kare / dairesel, içi boş / katı). Amaç, dört özellikten herhangi biri için yatay, dikey veya 2 diyagonal boyunca arka arkaya dört yapmaktır! Yani 4 siyah parça, 4 beyaz parça, 4 uzun parça, 4 kısa parça, 4 kare parça, 4 dairesel parça, 4 içi boş parça veya 4 katı parça.

Yukarıdaki resim bitmiş bir oyunu gösteriyor, 4 kare parça nedeniyle arka arkaya dört tane var.

Meydan okuma

Quarto'da bazı oyunlar berabere bitebilir.

Toplam olası son pozisyon sayısı 16!yaklaşık 20 trilyon.

Bu son konumlardan kaç tanesi berabere?

kurallar

  1. Çözüm, çizilen toplam son konum sayısını hesaplayan ve çıktı veren bir program olmalıdır . Doğru cevap414298141056

  2. Oyunun kurallarına ilişkin bilgileri sadece manuel olarak çıkartılabilir (bilgisayar destekli kanıt yoktur).

  3. Problemin matematiksel basitleştirmelerine izin verilir, ancak çözümünüzde açıklanmalı ve (elle) kanıtlanmalıdır.

  4. Kazanan, CPU çalışma süresi açısından en uygun çözüme sahip olanıdır.

  5. Kazananı belirlemek için, her bir çözümü, 16 GB RAM'li bir MacBook Pro 2,5 GHz Intel Core i7'de 30 metreden daha az bir çalışma süresiyle çalıştıracağım .

  6. Diğer tahta boyutlarıyla da çalışan bir çözüm bulmak için bonus puan yok. Bu güzel olsa da.

  7. Varsa, programınızın yukarıda belirtilen donanımda 1 dakika içinde derlenmesi gerekir (derleyici optimizasyonunun kötüye kullanılmasını önlemek için)

  8. Varsayılan boşluklara izin verilmez

gönderimler

Lütfen gönderin:

  1. Kod veya koda bir github / bitbucket bağlantısı.
  2. Kodun çıktısı.
  3. Yerel olarak ölçülen çalışma süreniz
  4. Yaklaşımınızın açıklaması.

Son tarih

Başvurular için son tarih 1 Mart, bu yüzden hala çok zaman var.


Yorumlar uzun tartışmalar için değildir; bu sohbet sohbete taşındı .
Martin Ender

Yanıtlar:


3

C: 414298141056 yaklaşık 5 2.5 dakika içinde berabere bulundu .

Simetriye duyarlı bir transpozisyon tablosu ile basit derinlik-ilk arama. Permütasyon altındaki niteliklerin simetrisini ve tahtanın 8 kat dihedral simetrisini kullanıyoruz.

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>

typedef uint16_t u8;
typedef uint16_t u16;
typedef uint64_t u64;

#define P(i, j) (1 << (4 * (i) + (j)))

#define DIAG0 (P(0, 0) | P(1, 1) | P(2, 2) | P(3, 3))
#define DIAG1 (P(3, 0) | P(2, 1) | P(1, 2) | P(0, 3))

u64 rand_state;

u64 mix(u64 x) {
    u64 a = x >> 32;
    u64 b = x >> 60;
    x ^= (a >> b);
    return x * 7993060983890856527ULL;
}

u64 rand_u64() {
    u64 x = rand_state;
    rand_state = x * 6364136223846793005ULL + 1442695040888963407ULL;
    return mix(x);
}

u64 ZOBRIST_TABLE[(1 << 16)][8];

u16 transpose(u16 x) {
    u16 t = 0;
    for (int i = 0; i < 4; i++) {
        for (int j = 0; j < 4; j++) {
            if (x & P(j, i)) {
                t |= P(i, j);
            }
        }
    }
    return t;
}

u16 rotate(u16 x) {
   u16 r = 0;
   for (int i = 0; i < 4; i++) {
       for (int j = 0; j < 4; j++) {
           if (x & P(3 - j, i)) {
                r |= P(i, j);
            }
       }
   } 
   return r;
}

void initialize_zobrist_table(void) {
    for (int i = 0; i < 1 << 16; i++) {
        ZOBRIST_TABLE[i][0] = rand_u64();
    }
    for (int i = 0; i < 1 << 16; i++) {
        int j = i;
        for (int r = 1; r < 8; r++) {
            j = rotate(j);
            if (r == 4) {
                j = transpose(i);
            }
            ZOBRIST_TABLE[i][r] = ZOBRIST_TABLE[j][0];
        }
    }
}

u64 hash_board(u16* x) {
    u64 hash = 0;
    for (int r = 0; r < 8; r++) {
        u64 h = 0;
        for (int i = 0; i < 8; i++) {
            h += ZOBRIST_TABLE[x[i]][r];
        }
        hash ^= mix(h);
    }
    return mix(hash);
}

u8 IS_WON[(1 << 16) / 8];

void initialize_is_won(void) {
    for (int x = 0; x < 1 << 16; x++) {
        bool is_won = false;
        for (int i = 0; i < 4; i++) {
            u16 stride = 0xF << (4 * i);
            if ((x & stride) == stride) {
                is_won = true;
                break;
            }
            stride = 0x1111 << i;
            if ((x & stride) == stride) {
                is_won = true;
                break;
            }
        }
        if (is_won == false) {
            if (((x & DIAG0) == DIAG0) || ((x & DIAG1) == DIAG1)) {
                is_won = true;
            }
        }
        if (is_won) {
            IS_WON[x / 8] |= (1 << (x % 8));
        }
    }
}

bool is_won(u16 x) {
    return (IS_WON[x / 8] >> (x % 8)) & 1;
}

bool make_move(u16* board, u8 piece, u8 position) {
    u16 p = 1 << position;
    for (int i = 0; i < 4; i++) {
        bool a = (piece >> i) & 1;
        int j = 2 * i + a;
        u16 x = board[j] | p;
        if (is_won(x)) {
            return false;
        }
        board[j] = x;
    }
    return true;
}

typedef struct {
    u64 hash;
    u64 count;
} Entry;

typedef struct {
    u64 mask;
    Entry* entries;
} TTable;

Entry* lookup(TTable* table, u64 hash, u64 count) {
    Entry* to_replace;
    u64 min_count = count + 1;
    for (int d = 0; d < 8; d++) {
        u64 i = (hash + d) & table->mask;
        Entry* entry = &table->entries[i];
        if (entry->hash == 0 || entry->hash == hash) {
            return entry;
        }
        if (entry->count < min_count) {
            min_count = entry->count;
            to_replace = entry;
        }
    }
    if (to_replace) {
        to_replace->hash = 0;
        to_replace->count = 0;
        return to_replace;
    }
    return NULL;
}

u64 count_solutions(TTable* ttable, u16* board, u8* pieces, u8 position) {
    u64 hash = 0;
    if (position <= 10) {
        hash = hash_board(board);
        Entry* entry = lookup(ttable, hash, 0);
        if (entry && entry->hash) {
            return entry->count;        
        }
    }
    u64 n = 0;
    for (int i = position; i < 16; i++) {
        u8 piece = pieces[i];
        u16 board1[8];
        memcpy(board1, board, sizeof(board1));
        u8 variable_ordering[16] = {0, 1, 2, 3, 4, 8, 12, 6, 9, 5, 7, 13, 10, 11, 15, 14};
        if (!make_move(board1, piece, variable_ordering[position])) {
            continue;
        }
        if (position == 15) {
            n += 1;
        } else {
            pieces[i] = pieces[position];
            n += count_solutions(ttable, board1, pieces, position + 1); 
            pieces[i] = piece;
        }
    }
    if (hash) {
        Entry* entry = lookup(ttable, hash, n);
        if (entry) {
            entry->hash = hash;
            entry->count = n;
        }
    }
    return n;
}

int main(void) {
    TTable ttable;
    int ttable_size = 1 << 28;
    ttable.mask = ttable_size - 1;
    ttable.entries = calloc(ttable_size, sizeof(Entry));
    initialize_zobrist_table();
    initialize_is_won();
    u8 pieces[16];
    for (int i = 0; i < 16; i++) {pieces[i] = i;}
    u16 board[8] = {0};
    printf("count: %lu\n", count_solutions(&ttable, board, pieces, 0));
}

Ölçülen puan (@wvdz):

$ clang -O3 -march=native quarto_user1502040.c
$ time ./a.out
count: 414298141056

real    1m37.299s
user    1m32.797s
sys     0m2.930s

Puan (kullanıcı + sys): 1m35.727s


Harika bir çözüm gibi görünüyor. Ancak, açıklamanızda biraz genişleyebilir misiniz? Çözümün doğru olduğunu nereden biliyorsunuz?
wvdz

Bunu yapmak için hangi derleyici bayrakları kullanılmalıdır? Denedim -O3 -march=nativeve makinemde 1m48'ler var. (CC @wvdz)
Dennis

@Dennis, ben de bunu yaptım.
user1502040

@Dennis C derleme konusunda uzman değilim. Derleyici bayrağı kullanmadım. Düzenlememi güncelleyeceğim.
wvdz

1

Java, 414298141056 berabere, 23m42.272s

Umarım kendi zorluğuna bir çözüm göndermekten hoşlanmazsınız, ancak bu zorluğu ilk etapta yayınlamamın nedeni, kendimi verimli bir çözüm bulamadığım için beni çıldırmış olmasıydı. En iyi denememin tamamlanması günler sürecek.

User1502040'ın cevabını inceledikten sonra kodumu biraz makul bir süre içinde çalışacak şekilde değiştirmeyi başardım. Çözümüm hala önemli ölçüde farklı, ancak bazı fikirler çaldım:

  • Son konumlara odaklanmak yerine, aslında oyunu oynamaya odaklanıyorum, tahtaya bir parça arka arkaya koyuyorum. Bu, doğru sayıyla semantik olarak özdeş konumların bir tablosunu oluşturmamı sağlar.
  • Parçaların yerleştirildiği sırayı fark etmek: erken kazanma şansını en üst düzeye çıkaracak şekilde yerleştirilmelidir.

Bu çözüm ve kullanıcı1502040 arasındaki temel fark 's tablosu kullanmıyorum, ancak bir tahtanın kanonik bir temsilini kullanmam. Tüm tahtayı döndürmüyorum veya devretmiyorum, sadece parçaların özelliklerini.

Gelebileceğim en iyisi bu. Bariz veya daha az bariz optimizasyonlar için fikirler en iyisidir!

public class Q {

    public static void main(String[] args) {
        System.out.println(countDraws(getStartBoard(), 0));
    }

    /** Order of squares being filled, chosen to maximize the chance of an early win */
    private static int[] indexShuffle = {0, 5, 10, 15, 14, 13, 12, 9, 1, 6, 3, 2, 7, 11, 4, 8};

    /** Highest depth for using the lookup */
    private static final int MAX_LOOKUP_INDEX = 10;

    public static long countDraws(long board, int turn) {
        long signature = 0;
        if (turn < MAX_LOOKUP_INDEX) {
            signature = getSignature(board, turn);
            if (cache.get(turn).containsKey(signature))
                return cache.get(turn).get(signature);
        }
        int indexShuffled = indexShuffle[turn];
        long count = 0;
        for (int n = turn; n < 16; n++) {
            long newBoard = swap(board, indexShuffled, indexShuffle[n]);
            if (partialEvaluate(newBoard, indexShuffled))
                continue;
            if (turn == 15)
                count++;
            else
                count += countDraws(newBoard, turn + 1);
        }
        if (turn < MAX_LOOKUP_INDEX)
            cache.get(turn).put(signature, count);
        return count;
    }

    /** Get the canonical representation for this board and turn */
    private static long getSignature(long board, int turn) {
        int firstPiece = getPiece(board, indexShuffle[0]);
        long signature = minTranspositionValues[firstPiece];
        List<Integer> ts = minTranspositions.get(firstPiece);
        for (int n = 1; n < turn; n++) {
            int min = 16;
            List<Integer> ts2 = new ArrayList<>();
            for (int t : ts) {
                int piece = getPiece(board, indexShuffle[n]);
                int posId = transpositions[piece][t];
                if (posId == min) {
                    ts2.add(t);
                } else if (posId < min) {
                    min = posId;
                    ts2.clear();
                    ts2.add(t);
                }
            }
            ts = ts2;
            signature = signature << 4 | min;
        }
        return signature;
    }

    private static int getPiece(long board, int position) {
        return (int) (board >>> (position << 2)) & 0xf;
    }

    /** Only evaluate the relevant winning possibilities for a certain turn */
    private static boolean partialEvaluate(long board, int turn) {
        switch (turn) {
            case 15:
                return evaluate(board, masks[8]);
            case 12:
                return evaluate(board, masks[3]);
            case 1:
                return evaluate(board, masks[5]);
            case 3:
                return evaluate(board, masks[9]);
            case 2:
                return evaluate(board, masks[0]) || evaluate(board, masks[6]);
            case 11:
                return evaluate(board, masks[7]);
            case 4:
                return evaluate(board, masks[1]);
            case 8:
                return evaluate(board, masks[4]) || evaluate(board, masks[2]);
        }
        return false;
    }

    private static List<Map<Long, Long>> cache = new ArrayList<>();
    static {
        for (int i = 0; i < 16; i++)
            cache.add(new HashMap<>());
    }

    private static boolean evaluate(long board, long[] masks) {
        return _evaluate(board, masks) || _evaluate(~board, masks);
    }

    private static boolean _evaluate(long board, long[] masks) {
        for (long mask : masks)
            if ((board & mask) == mask)
                return true;
        return false;
    }

    private static long swap(long board, int x, int y) {
        if (x == y)
            return board;
        if (x > y)
            return swap(board, y, x);
        long xValue = (board & swapMasks[1][x]) << ((y - x) * 4);
        long yValue = (board & swapMasks[1][y]) >>> ((y - x) * 4);
        return board & swapMasks[0][x] & swapMasks[0][y] | xValue | yValue;
    }

    private static long getStartBoard() {
        long board = 0;
        for (long n = 0; n < 16; n++)
            board |= n << (n * 4);
        return board;
    }

    private static List<Integer> allPermutations(int input, int size, int idx, List<Integer> permutations) {
        for (int n = idx; n < size; n++) {
            if (idx == 3)
                permutations.add(input);
            allPermutations(swapBit(input, idx, n), size, idx + 1, permutations);
        }
        return permutations;
    }

    private static int swapBit(int in, int x, int y) {
        if (x == y)
            return in;
        int xMask = 1 << x;
        int yMask = 1 << y;
        int xValue = (in & xMask) << (y - x);
        int yValue = (in & yMask) >>> (y - x);
        return in & ~xMask & ~yMask | xValue | yValue;
    }

    private static int[][] transpositions = new int[16][48];
    static {
        for (int piece = 0; piece < 16; piece++) {
            transpositions[piece][0] = piece;
            List<Integer> permutations = allPermutations(piece, 4, 0, new ArrayList<>());
            for (int n = 1; n < 24; n++)
                transpositions[piece][n] = permutations.get(n);
            permutations = allPermutations(~piece & 0xf, 4, 0, new ArrayList<>());
            for (int n = 24; n < 48; n++)
                transpositions[piece][n] = permutations.get(n - 24);
        }
    }

    private static int[] minTranspositionValues = new int[16];
    private static List<List<Integer>> minTranspositions = new ArrayList<>();
    static {
        for (int n = 0; n < 16; n++) {
            int min = 16;
            List<Integer> elems = new ArrayList<>();
            for (int t = 0; t < 48; t++) {
                int elem = transpositions[n][t];
                if (elem < min) {
                    min = elem;
                    elems.clear();
                    elems.add(t);
                } else if (elem == min)
                    elems.add(t);
            }
            minTranspositionValues[n] = min;
            minTranspositions.add(elems);
        }
    }

    private static final long ROW_MASK = 1L | 1L << 4 | 1L << 8 | 1L << 12;
    private static final long COL_MASK = 1L | 1L << 16 | 1L << 32 | 1L << 48;
    private static final long FIRST_DIAG_MASK = 1L | 1L << 20 | 1L << 40 | 1L << 60;
    private static final long SECOND_DIAG_MASK = 1L << 12 | 1L << 24 | 1L << 36 | 1L << 48;

    private static long[][] masks = new long[10][4];
    static {
        for (int m = 0; m < 4; m++) {
            long row = ROW_MASK << (16 * m);
            for (int n = 0; n < 4; n++)
                masks[m][n] = row << n;
        }
        for (int m = 0; m < 4; m++) {
            long row = COL_MASK << (4 * m);
            for (int n = 0; n < 4; n++)
                masks[m + 4][n] = row << n;
        }
        for (int n = 0; n < 4; n++)
            masks[8][n] = FIRST_DIAG_MASK << n;
        for (int n = 0; n < 4; n++)
            masks[9][n] = SECOND_DIAG_MASK << n;
    }

    private static long[][] swapMasks;
    static {
        swapMasks = new long[2][16];
        for (int n = 0; n < 16; n++)
            swapMasks[1][n] = 0xfL << (n * 4);
        for (int n = 0; n < 16; n++)
            swapMasks[0][n] = ~swapMasks[1][n];
    }
}

Ölçülen puan:

$ time java -jar quarto.jar 
414298141056

real    20m51.492s
user    23m32.289s
sys     0m9.983s

Puan (kullanıcı + sys): 23m42.272s

Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.