Atomik İyonlaşma Enerjilerini Sıkıştırma


22

Bu farklı bir sıkıştırma mücadelesi türüdür. Normal bir mücadelesinde, bir listeyi tam olarak yeniden oluşturmanız gerekir. Burada, değerleri istediğiniz şekilde yuvarlamanıza izin verilir. Yakalamak nedir? Çıktınızın ne kadar yanlış olduğuna bağlı olarak puanınız cezalandırılır.

Bu sorunun altındaki ilk 108 element için ilk iyonlaşma enerjilerinin bir listesidir. Programınız yürütüldüğünde, bu listenin makul derecede doğru bir kopyasını çıkarmalıdır. Hiçbir girdi veya argüman olmayacak. Puanlama amacıyla çıktınız deterministik olmalıdır (her defasında aynı çıktı).

Çıkış biçimi

Programınız / işlevin, artan atom sayısının sırasına göre sıralanmış 108 sayının bir listesini çıkarması gerekir. Bu liste uygun herhangi bir biçimde olabilir. Aşağıdaki kaynak verileri, hidrojenden hassuma kadar doğru sırada verilmiştir.

puanlama

Puanınız, programınızın bayt cinsinden uzunluğu ve yuvarlama cezası olacaktır. Her eleman için bir yuvarlama cezası hesaplanır ve toplam cezayı vermek için toplanır.

Örnek olarak, numarayı alalım 11.81381. Programınızın yanlış bir değer verdiğini varsayalım 11.81299999.

  1. Birincisi, her iki sayı da, gerçek değerde artık ondalık bir nokta kalmayacak şekilde, aynı güç 10 ile çarpılır 1181381, 1181299.999. Gerçek değerde izleyen sıfırlar önemli olarak kabul edilir.

  2. Daha sonra, mutlak fark mutlak hatasını tespit etmek için alınır: 81.001.

  3. Son olarak, bu elementin cezasını olarak hesaplıyoruz max(0, log10(err * 4 - 1)) -> 2.50921. Bu formül, <0.5 hata vermeyecek şekilde ceza vermeyecek (cevabın yuvarlama içinde doğru olması nedeniyle), ayrıca asimptotik% 50'lik bir sayıyı belirli bir ondalık basamağa yuvarlamanın puanlamada net bir fayda sağlayacağı olasılığını verdi diğer sıkıştırma).

İşte bir ceza hesaplama programının Try-It-Online uygulaması. Bu programa giriş, her satırda bir tane olmak üzere bir sayı listesi olarak sağlanır. Bu programın çıktısı toplam ceza ve puan başına öğe dökümüdür.

Veri

Aşağıdaki numaraların listesi, 1 ile 108 arasındaki atom numarasından doğru sırada, hedef veridir.

Kaynak

13.598434005136
24.587387936
5.391714761
9.322699
8.2980190
11.260296
14.53413
13.618054
17.42282
21.564540
5.1390767
7.646235
5.985768
8.151683
10.486686
10.36001
12.96763
15.7596112
4.34066354
6.11315520
6.56149
6.82812
6.746187
6.76651
7.434018
7.9024678
7.88101
7.639877
7.726380
9.3941990
5.9993018
7.899435
9.7886
9.752392
11.81381
13.9996049
4.177128
5.69486720
6.21726
6.63390
6.75885
7.09243
7.11938
7.36050
7.45890
8.33686
7.576234
8.993822
5.7863552
7.343917
8.608389
9.00966
10.45126
12.1298431
3.893905548
5.211664
5.5769
5.5386
5.473
5.5250
5.582
5.64371
5.670385
6.14980
5.8638
5.93905
6.0215
6.1077
6.18431
6.254159
5.425871
6.825069
7.549571
7.86403
7.83352
8.43823
8.96702
8.95883
9.225553
10.437504
6.1082871
7.4166796
7.285516
8.414
9.31751
10.7485
4.0727409
5.278424
5.380226
6.3067
5.89
6.19405
6.2655
6.0258
5.9738
5.9914
6.1978
6.2817
6.3676
6.50
6.58
6.65
4.90
6.01
6.8
7.8
7.7
7.6

Baselines ve İpuçları

Yukarıdaki kaynak veri 906 bayttır, bazı sıkıştırma araçları 500 baytı alabilmektedir. İlginç çözümler, akıllı bir yuvarlama gerçekleştirmeye çalışan, cebirsel formüller veya yaklaşık değerleri tek başına sıkıştırmadan daha az bayt cinsinden üretmek için diğer teknikleri kullananlardır. Bununla birlikte, bu değişimleri diller arasında değerlendirmek zordur: Bazı diller için tek başına sıkıştırma en uygun olabilirken, diğer birçok dilde bütünüyle sıkıştırma araçları eksik olabilir, bu nedenle diller arasında puanlarda geniş bir değişiklik olmasını bekliyorum. Bu iyi, ben "diller arasında rekabet, aralarında değil" felsefesinden geçiyorum.

Periyodik tablodaki eğilimlerden yararlanmaya çalışmanın yararlı olabileceğini tahmin ediyorum. Aşağıda iyonlaşma enerjilerini bulduğum bir grafik var, böylece bu eğilimlerin bazılarını görebilirsiniz.

görüntü tanımını buraya girin


2
Hm, grafik bazı ilginç eğilimler gösteriyor, belki de sıkıştırma için bu yardımcı oluyor ...
Erik Outgolfer

3
Yan not: Bu oldukça deneysel bir meydan okumadır. Puanlama şeması benzersiz, umarım iyi sonuç verir.
PhiNotPi

Çok güzel bir meydan okuma. Maalesef, referansın doğruluğu o kadar yüksektir ki, fiziksel olarak motive edilmiş yaklaşım formülleri (iki basamaktan fazlasını tahmin etmeyi gerçekten bekleyemezler) rakamların gerçek anlamda sıkıştırılmasına karşı rekabet etmek için pek şansları yoktur. (Tabii ki Schrödinger denklemini çözme özeti, tabii ki bu da pek mümkün değil.) IMO, ceza formülünde logaritma olmadan daha ilginç olurdu, bu nedenle yüksek anlamlı rakamların gerçekten doğru olması daha önemliydi.
saat

@PhiNotPi puanlama düzeni değil yani , benzersiz sağ ?
Esolanging Fruit

1
@EsolangingFruit Evet benzerlikleri görüyorum. Bunun, cezanın "sürekli" olması bakımından benzersiz olduğunu düşünüyorum, yani herhangi bir çıktı için doğru ya da yanlış değilsinizdir, bu yüzden her sayı için ne kadar para koymanız gerektiğini bulmakla ilgilidir. (Bu puanlama şeması 2015'te ilk kez kum
havuzundayken

Yanıtlar:


6

Temiz , 540 bayt + 64.396 Ceza = 604.396

Not: Okunabilirlik uğruna, [Char]çoğu basılamıyor olduğundan , kelimenin tam anlamıyla her bayttan kaçtım . Ancak, kaçış başına yalnızca bir bayt olarak sayılır (boş, alıntı ve yeni satırlar hariç), Temiz, doğal olarak kodlamadan bağımsız olarak (boşlar hariç) kaynak dosyaları alır.

import StdEnv,GenLib
c[h:t]=[(toInt h>>i)rem 2\\i<-[0..7]]++c t
c[]=[]
r[]=[]
r l=[7<<29+2^62+sum[d<<p\\d<-l&p<-[32..53]]:r(drop 22l)]
u::Maybe[Real]
u=uncompress{e\\e<-[108:r(c['\145\062\353\227\045\336\021\131\341\224\212\225\230\140\121\241\231\027\321\306\361\254\075\154\161\041\144\255\346\110\371\126\172\155\361\127\152\023\350\222\117\116\341\222\155\357\351\072\341\153\315\025\171\317\141\367\076\232\377\323\206\301\257\235\103\154\157\274\035\010\347\167\142\370\355\074\172\320\347\036\165\262\210\364\177\025\144\176\303\223\143\116\340\270\012\172\062\377\257\141\265\320\342\261\225\347\215\165\044\152\017\011\133\251\027\347\243\307\231\304\165\351\325\035\036\053\010\341\344\131\363\207\072\045\327\012\130\347\167\023\312\023\210\013\347\244\236\020\172\153\362\370\142\123\276\116\226\341\211\245\105\136\145\146\130\367\123\026\312\244\225\347\152\225\145\142\207\164\227\145\360\105\140\201\041\271\141\273\274\230\020\101\166\101\133\171\063\155\302\062\036\061\335\147\130\365\175\201\203\035\357\341\272\172\270\067\047\002\200\223\342\156\230\253\152\347\105\322\335\117\203\220\242\342\316\137\311\247\004\155\164\124\131\205\325\203\116\306\365\170\325\032\143\337\017\331\232\006\266\122\176\305\334\137\214\312\130\035\110\306\206\227\001\000\150\353\121\132\146\246\226\231\071\365\050\140\063\063\333\314\314\307\314\354\231\231\171'])]}

Çevrimiçi deneyin!

Bu, gerçek bir fayda elde etmek için Clean'ın genel sıkıştırma özelliğini (teknik olarak aslında sıkıştırma değil, ikili serileştirme) kullanabildiğim ilk zorluk.

İle başladım [Real] soru - 64-bit kayan nokta sayıları listesi . Bu listeyi seri hale getirdikten sonra, ilk 10 bit (her sayı için aynıydı) ve alt 32 bitin en uygun konfigürasyonunu sabit olarak basitleştirdim 7<<29+2^62. Sayı başına kalan 22 bit, her biri 2.75 karaktere çevrildi ve bir dizgide kodlandı.

Bu, tüm kaçış sabitlerini her kaçış dahil sadece 302 baytta bırakır !


1
Belki CleanSnappy ile daha iyi sıkıştırma elde edebilirsiniz; cloogle.org/src/#CleanSnappy/Snappy / github.com/camilstaps/CleanSnappy

5

Python 3 , 355 + 202 353 bayt + 198 ceza = 551

for i in'趐￵㠡愍噢甹靍跄땠㖀侙㹐哜洫毙蛿ꐏⴰ㾤䑎䜕䘻䙱䵤剄刋侈偯懌㹴刼旧斆竼醽⭼㭉䂹䔏䙜䧕䨝䲠䶦囊仟嶡㰽䱴妝巋泍繆⢉㙁㨎㦨㣺㦄㨜㫀㬈䀅㴋㷔㺯㾕䁡䄛㡼䜍亘凞册埘嵙嵃怊沨㾗䴵䯘垗惿濥⩦㛳㠂䆧㵑䁻䄺㺻㸰㹟䂅䅥䉊䎫䒀䔺㌃㺑䛊儳倩伞':print(ord(i)/2665)

Çevrimiçi deneyin!

0xffff (65535)Üst sınır olarak kullandım çünkü 3 baytlık tek bir unicode karakterinde saklanabilecek maksimum değer.
En yüksek iyonlaşma enerjisi ~ 24.587 olduğundan, bu oran verir 2665.
Dizenin kendisini oluşturmak için snippet'i kullandım ''.join([chr(int(round(n*2665)))for n in ionization_energies])(kullanmanız gereken python2'de unichr), konsolunuz karakterleri yazdırabilir veya vermeyebilir.


4 bayt karakter, 462 bayt + 99 penaltı = 561

for i in'򖛬􏿸𻩕񧈞񛳀񼤓򠲊򖩥󀯗󮣬𸶞񔥢񂍻񚋙񴀥񲦹򏝅򮕴𰁌񃨇񈥢񋢔񊨓񊶬񒏒񗚽񗋰񔡂񕞒񧻆񂗠񗘳񬒕񫸬򂬋򚷮𮍚𾿾񄱴񉘳񊱑񎝜񎰡񑛏񒠺񜎠񓳾񣟨񀀯񑏠񟎯񣪶񳧟򆋻𫄹𹩷𽬜𽑕𼢹𽇭𽰄𾛰𾮨񄂄񀷥񁬶񂧎񃤐񄚟񅋼𼁡񋠊񓡆񖿯񖪈񝖑񣌪񣆷񦃬񳝰񃤫񒃁񐦉񝅇񧄳񶹼𭃠𺙈𻡍񅱉񁊈񄡙񅓾񂪑񂅝񂑺񄤃񅟜񆜑񇺀񈲩񉤍𶍍񂟅񋎚񖒚񕋦񔄳':print(ord(i)/45312)

Çevrimiçi deneyin!
Aynı fikir, ancak maksimum değer0x110000


Neden tek bir üç baytlık unicode karakter yalnızca 0x100**2değerleri depolayabilir ve saklayamaz 0x100**3?
Jonathan Frech

Şu anda bilinen en yüksek atom sayısının 118 olduğunu söyleyebilirim - bu durumda göz önünde bulundurulması gereken en yüksek değer 108'tir - ~ 24 değil. Muhtemelen eV'de iyonlaşma enerjisi demek istediniz.
Jonathan Frech

@JonathanFrech'in bir noktası var: UTF-8 burada kötü bir seçimdir. Diğer kodlamalar daha verimlidir.
Dennis,

4

C, 49 bayt + 626.048 ceza = 675.048

f(i){for(i=0;i<108;)printf("%f\n",5.5+i++/13%2);}

Çevrimiçi deneyin!


5
37 bayt f(i){for(i=0;i++<108;)printf("6\n");}:; ceza: 625.173330827107; toplam = 662,173330827
Tsathoggua

1
@ Tsathoggua Hmm, Bunu denedim ve daha fazla ceza aldım. Sanırım yanılmışım. f(i){for(i=0;i<108;)puts("6");}aynı şeyi 31 baytta da yapar.
Steadybox

Siz de buna ihtiyacınız var i++("31" de), ama f(i){for(i=108;i;i--)puts("6");}32.
Jonathan Allan

2
@ JonathanAllan Whoops. f(i){for(i=108;i--;)puts("6");}31'e geri döndü.
Steadybox

4

CJam (389 bayt + 33.09 ceza => 422.09)

XXD kodlanmış:

0000000: 2256 3232 7c24 1bf9 7116 2f43 c82b 110e  "V22|$..q./C.+..
0000010: 6b93 4525 1cb3 4118 4afc 4d05 5c22 e15a  k.E%..A.J.M.\".Z
0000020: 11bc 563c 38e4 626c 1efb 6b10 c229 0e35  ..V<8.bl..k..).5
0000030: 873d 15df 2f71 36ca 404d 54d9 4979 17ba  .=../q6.@MT.Iy..
0000040: 4938 a953 6fb6 5f04 75f0 5c22 5c6b 39e5  I8.So._.u.\"\k9.
0000050: 3073 6fbd 343e fb36 4fff 357c 8c36 10f3  0so.4>.6O.5|.6..
0000060: 3b3c 37cd 3f1c 10a1 3f06 933d 0f1d fa3d  ;<7.?...?..=...=
0000070: 67e8 4549 6a9c 2f7f 24be 3f99 4713 e147  g.EIj./.$.?.G..G
0000080: 011c e14f 20d5 577f 668d 2135 30c2 2d47  ...O .W.f.!50.-G
0000090: 45d1 315e bc35 8936 0987 385e d238 7a9f  E.1^.5.6..8^.8z.
00000a0: 3af1 3b55 f441 2cbc 3c4e 8843 7ceb 2e25  :.;U.A,.<N.C|..%
00000b0: 1d93 3a60 15f1 4237 3fb0 4404 f949 e750  ..:`..B7?.D..I.P
00000c0: 423d b21e 265b 7cf6 2958 df2c 4edf 2c27  B=..&[|.)X.,N.,'
00000d0: c32b e42c 992c d32d 1394 2d2e 3cd9 3119  .+.,.,.-..-.<.1.
00000e0: b22e 74c3 2f41 cb30 9630 6ea4 313c dd32  ..t./A.0.0n.1<.2
00000f0: 04a1 2b34 0be1 364c 6fb8 3c32 61af 3e74  ..+4..6Lo.<2a.>t
0000100: e23e 55c3 4160 af43 6f8e 436a f544 733d  .>U.A`.Co.Cj.Ds=
0000110: eb49 e030 6e71 b43b 2ad7 3a24 af41 d345  .I.0nq.;*.:$.A.E
0000120: 5c22 c84a 7f9d 204a 3ea5 2a1d 0dcb 2b05  \".J.. J>.*...+.
0000130: 2cfd 32ba af31 46da 320f ef30 1ab5 2fe5  ,.2..1F.2..0../.
0000140: 2ff7 314a c632 20ba 3278 b6b4 34d1 b5a7  /.1J.2 .2x..4...
0000150: b0b6 bebd bc22 7b69 3235 362b 3262 283b  ....."{i256+2b(;
0000160: 287d 2531 6125 7b32 253a 2b5f 323e 315c  (}%1a%{2%:+_2>1\
0000170: 2b32 6232 405f 2c33 2d5c 323c 3262 2d23  +2b2@_,3-\2<2b-#
0000180: 642f 4e7d 2f                             d/N}/

Temelde bu

"MAGIC STRING"{i256+2b(;(}%1a%{2%:+_2>1\+2b2@_,3-\2<2b-#d/N}/

Bu sayıları saklamak için özel değişken genişliğinde kayan nokta biçimini kullanır. Üs için iki bit yeterli; Mantis, 5 bit ila 47 bit, herhangi bir yere 7'nin katları halinde gelir. Bayt başına kalan bit, ayırıcı olarak işlev görür.

Çevrimiçi bir demo yapmak için sihirli dizgiyi kopyaladığımda bazı yolsuzluklar yaşanıyor gibi görünüyor , bu yüzden 2 ceza puanı daha fazla. Doğrudan URL'yi nasıl oluşturacağımı bulmak zorunda kalacağım ...


Üretim programı:

e# Score calculation
{1$`'.+'.%1=,10\#_@*@@*-z 4*1- 0e> ml10ml/0e>}:E;

q~]

e# Custom float format
e# Exponent goes from 2^1 to 2^4, so 2 bits
e# Each byte has 1 bit for continuation, so 7 bits available
e# That means the options for the mantissa are 5 bits, 12 bits, 19 bits, 26 bits, 33 bits, 40 bits, 47 bits
{
  :X
  0\{2/\)\_2<!}g
  e# Stack: exponent mantissa
  2 47#*i2b(;
  e# Stack: exponent mantissa-bits
  W%7/W%Wf%:M
  7,{
    )M<e_
    1_$+2b2@,#d/
  }%
  2 3$#f*
  X\f{E}
  _,,.+
  _:e<
  #)<

  \(4+2b(;\+e_7/
  _,,:!W%\.+2fb:c
}%
""*`

Çevrimiçi demo


Kendime not: sabit nokta yaklaşık 1 puan kazandırır.
Peter Taylor

Kendime Not: Çıkarılanı kaldırmak için dizenin ince ayarlanması "hatayı buna değmeyecek kadar arttırır mı?
Peter Taylor

4

Jöle ,  379 361  360 bayt + 0 Ceza = 360

-18 Peter Taylor'dan bir gözlem kullanarak (10. sıradaki değerler 1 veya 2 iken 1. sıradaki değerler değil).

<3Ḣ‘_L⁵*×Ḍ
“KẸ⁺dzⱮÑ2⁵İ2ṭ¬⁴²¬¶9°ß°øİẆGẊœ%X(¢ṆḢ/8¬Ɗ’b7µ18,-;_3+\⁺Ṭœṗ“SŒƥŻƭ°}MḋṘḥfyɼ{ṅĊLƝġœ⁺ḟ8ḶhỊDṭ&æ%*ɱ¬ =¦ẉ Qh"¶:ḌĊ€ĖṢė°ġṀƬmẓSṃ÷E⁴Ȥ⁼ḋ#ØĖḂ2øzẸżƈ¥Ȧƥ7¢®|ḳẊṆƙƲɦḟɼṖỊɲṁẉɗ6ẇSɗ⁴ẉİt]ẓeṆHṚƑ½>]ɦ~T¢~ẆẆA`/6ƭṡxṠKG£Ḅ+wḃḣỤw×ḌŻƲF>Ụ]5bJḤḟCḞİḶ|ȥ9Ỵ0ụKṗT⁴ƥƁṖı×ṄtTĊG©ṀḥṬƭʂd½ḊȦуŀṣ¹ʋṖẓYL²ṅṿ&ẏdDṬIɦỵ¹b,ḷṣƭ#P'µ{GTƇẹ¥L8SƥÑṆẈėẎßṀḷƓ⁷ðḳċ¿ḶM_ḲẈg9ḢĠi+LṭẹḲẎ¤g<ṘJJĿßæ⁺(ɲỴ3ɲgkSḃIƙṭ.Ỵ&_:cĿƝı’D¤Ç€

Çevrimiçi deneyin!

Nasıl?

Bu iki sabiti (AKA niladı) oluşturur:

  • (A) kullanılan tüm ondalık basamaklar (yani birleştikleri yeri ve ondalık basamak ayırıcılarını görmezden gelen birleştirilmiş tüm sayılar) ve
  • (B) her sayının kullandığı önemli rakamların sayısı

Sonra sayıları kayan nokta gösterimlerini yeniden oluşturmak için bunları kullanır.

Programın tamamı bu biçimdedir:

<3Ḣ‘_L⁵*×Ḍ
“...’b7µ18,-;_3+\⁺Ṭœṗ“...’D¤Ç€

( ...B ve A'yı oluşturmak için kodlanmış sayılardır)
ve şunun gibi çalışır:

<3Ḣ‘_L⁵*×Ḍ - Link 1, conversion helper: list of digits  e.g. [1,2,9,6,7,6,3]
<3         - less than three?                                [1,1,0,0,0,0,0]
  Ḣ        - head                                            1
   ‘       - increment                                       2
     L     - length                                          7
    _      - subtract                                        -5
      ⁵    - literal ten                                     10
       *   - exponentiate                                    0.00001
         Ḍ - undecimal (convert from base 10)                1296763
        ×  - multiply                                        12.96763
           - i.e. go from digits to a number between 3 and 30

“...’b7µ18,-;_3+\⁺Ṭœṗ“...’D¤Ç€ - Main link: no arguments
“...’                          - base 250 literal = 16242329089425509505495393436399830365761075941410177200411131173280169129083782003564646
     b7                        - to base seven = [2,0,4,3,2,4,2,4,3,2,3,3,4,2,3,5,3,3,0,3,4,2,4,4,1,4,3,4,3,2,1,5,3,5,1,5,0,3,3,3,3,3,3,3,4,3,4,2,3,2,4,5,4,0,1,3,2,4,2,5,4,2,2,4,2,3,4,4,3,3,3,2,3,3,3,3,4,4,3,3,2,0,5,3,5,2,3,1,1,6,2,3,3,3,3,3,3,1,3,3,3,3,2,3,3]
       µ                       - start a new monadic chain, call that x
        18,-                   - integer list literal = [18,-1]
            ;                  - concatenate with x = [18,-1,2,0,4,3,2,4,2,4,3,2,3,3,4,2,3,5,3,3,0,3,4,2,4,4,1,4,3,4,3,2,1,5,3,5,1,5,0,3,3,3,3,3,3,3,4,3,4,2,3,2,4,5,4,0,1,3,2,4,2,5,4,2,2,4,2,3,4,4,3,3,3,2,3,3,3,3,4,4,3,3,2,0,5,3,5,2,3,1,1,6,2,3,3,3,3,3,3,1,3,3,3,3,2,3,3]
             _3                - subtract three = [15,-4,-1,-3,1,0,-1,1,-1,1,0,-1,0,0,1,-1,0,2,0,0,-3,0,1,-1,1,1,-2,1,0,1,0,-1,-2,2,0,2,-2,2,-3,0,0,0,0,0,0,0,1,0,1,-1,0,-1,1,2,1,-3,-2,0,-1,1,-1,2,1,-1,-1,1,-1,0,1,1,0,0,0,-1,0,0,0,0,1,1,0,0,-1,-3,2,0,2,-1,0,-2,-2,3,-1,0,0,0,0,0,0,-2,0,0,0,0,-1,0,0]
                \              - cumulative reduce with:
               +               -   addition    = [15,11,10,7,8,8,7,8,7,8,8,7,7,7,8,7,7,9,9,9,6,6,7,6,7,8,6,7,7,8,8,7,5,7,7,9,7,9,6,6,6,6,6,6,6,6,7,7,8,7,7,6,7,9,10,7,5,5,4,5,4,6,7,6,5,6,5,5,6,7,7,7,7,6,6,6,6,6,7,8,8,8,7,4,6,6,8,7,7,5,3,6,5,5,5,5,5,5,5,3,3,3,3,3,2,2,2]
                               -                 ("B" significant figures, with 1 extra for the very first entry and a missing last entry)
                 ⁺             - repeat (the cumulative addition to get
                               -         partition positions) = [15,26,36,43,51,59,66,74,81,89,97,104,111,118,126,133,140,149,158,167,173,179,186,192,199,207,213,220,227,235,243,250,255,262,269,278,285,294,300,306,312,318,324,330,336,342,349,356,364,371,378,384,391,400,410,417,422,427,431,436,440,446,453,459,464,470,475,480,486,493,500,507,514,520,526,532,538,544,551,559,567,575,582,586,592,598,606,613,620,625,628,634,639,644,649,654,659,664,669,672,675,678,681,684,686,688,690]
                  Ṭ            - untruth (1s at those indices) = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,1]
                           ¤   - nilad followed by link(s) as a nilad:
                     “...’     -   base 250 literal = 1359843400513624587387936539171476193226998298019011260296145341313618054174228221564540513907677646235598576881516831048668610360011296763157596112434066354611315520656149682812674618767665174340187902467878810176398777726380939419905999301878994359788697523921181381139996049417712856948672062172666339067588570924371193873605074589083368675762348993822578635527343917860838990096610451261212984313893905548521166455769553865473552505582564371567038561498058638593905602156107761843162541595425871682506975495717864037833528438238967028958839225553104375046108287174166796728551684149317511074854072740952784245380226630675896194056265560258597385991461978628176367665065866549060168787776
                          D    -   decimal (to base 10) = [1,3,5,9,8,4,3,4,0,0,5,1,3,6,2,4,5,8,7,3,8,7,9,3,6,5,3,9,1,7,1,4,7,6,1,9,3,2,2,6,9,9,8,2,9,8,0,1,9,0,1,1,2,6,0,2,9,6,1,4,5,3,4,1,3,1,3,6,1,8,0,5,4,1,7,4,2,2,8,2,2,1,5,6,4,5,4,0,5,1,3,9,0,7,6,7,7,6,4,6,2,3,5,5,9,8,5,7,6,8,8,1,5,1,6,8,3,1,0,4,8,6,6,8,6,1,0,3,6,0,0,1,1,2,9,6,7,6,3,1,5,7,5,9,6,1,1,2,4,3,4,0,6,6,3,5,4,6,1,1,3,1,5,5,2,0,6,5,6,1,4,9,6,8,2,8,1,2,6,7,4,6,1,8,7,6,7,6,6,5,1,7,4,3,4,0,1,8,7,9,0,2,4,6,7,8,7,8,8,1,0,1,7,6,3,9,8,7,7,7,7,2,6,3,8,0,9,3,9,4,1,9,9,0,5,9,9,9,3,0,1,8,7,8,9,9,4,3,5,9,7,8,8,6,9,7,5,2,3,9,2,1,1,8,1,3,8,1,1,3,9,9,9,6,0,4,9,4,1,7,7,1,2,8,5,6,9,4,8,6,7,2,0,6,2,1,7,2,6,6,6,3,3,9,0,6,7,5,8,8,5,7,0,9,2,4,3,7,1,1,9,3,8,7,3,6,0,5,0,7,4,5,8,9,0,8,3,3,6,8,6,7,5,7,6,2,3,4,8,9,9,3,8,2,2,5,7,8,6,3,5,5,2,7,3,4,3,9,1,7,8,6,0,8,3,8,9,9,0,0,9,6,6,1,0,4,5,1,2,6,1,2,1,2,9,8,4,3,1,3,8,9,3,9,0,5,5,4,8,5,2,1,1,6,6,4,5,5,7,6,9,5,5,3,8,6,5,4,7,3,5,5,2,5,0,5,5,8,2,5,6,4,3,7,1,5,6,7,0,3,8,5,6,1,4,9,8,0,5,8,6,3,8,5,9,3,9,0,5,6,0,2,1,5,6,1,0,7,7,6,1,8,4,3,1,6,2,5,4,1,5,9,5,4,2,5,8,7,1,6,8,2,5,0,6,9,7,5,4,9,5,7,1,7,8,6,4,0,3,7,8,3,3,5,2,8,4,3,8,2,3,8,9,6,7,0,2,8,9,5,8,8,3,9,2,2,5,5,5,3,1,0,4,3,7,5,0,4,6,1,0,8,2,8,7,1,7,4,1,6,6,7,9,6,7,2,8,5,5,1,6,8,4,1,4,9,3,1,7,5,1,1,0,7,4,8,5,4,0,7,2,7,4,0,9,5,2,7,8,4,2,4,5,3,8,0,2,2,6,6,3,0,6,7,5,8,9,6,1,9,4,0,5,6,2,6,5,5,6,0,2,5,8,5,9,7,3,8,5,9,9,1,4,6,1,9,7,8,6,2,8,1,7,6,3,6,7,6,6,5,0,6,5,8,6,6,5,4,9,0,6,0,1,6,8,7,8,7,7,7,6]
                               -                          ("A" all the required digits in order)
                   œṗ          - partition at truthy indices = [[1,3,5,9,8,4,3,4,0,0,5,1,3,6],[2,4,5,8,7,3,8,7,9,3,6],[5,3,9,1,7,1,4,7,6,1],[9,3,2,2,6,9,9],[8,2,9,8,0,1,9,0],[1,1,2,6,0,2,9,6],[1,4,5,3,4,1,3],[1,3,6,1,8,0,5,4],[1,7,4,2,2,8,2],[2,1,5,6,4,5,4,0],[5,1,3,9,0,7,6,7],[7,6,4,6,2,3,5],[5,9,8,5,7,6,8],[8,1,5,1,6,8,3],[1,0,4,8,6,6,8,6],[1,0,3,6,0,0,1],[1,2,9,6,7,6,3],[1,5,7,5,9,6,1,1,2],[4,3,4,0,6,6,3,5,4],[6,1,1,3,1,5,5,2,0],[6,5,6,1,4,9],[6,8,2,8,1,2],[6,7,4,6,1,8,7],[6,7,6,6,5,1],[7,4,3,4,0,1,8],[7,9,0,2,4,6,7,8],[7,8,8,1,0,1],[7,6,3,9,8,7,7],[7,7,2,6,3,8,0],[9,3,9,4,1,9,9,0],[5,9,9,9,3,0,1,8],[7,8,9,9,4,3,5],[9,7,8,8,6],[9,7,5,2,3,9,2],[1,1,8,1,3,8,1],[1,3,9,9,9,6,0,4,9],[4,1,7,7,1,2,8],[5,6,9,4,8,6,7,2,0],[6,2,1,7,2,6],[6,6,3,3,9,0],[6,7,5,8,8,5],[7,0,9,2,4,3],[7,1,1,9,3,8],[7,3,6,0,5,0],[7,4,5,8,9,0],[8,3,3,6,8,6],[7,5,7,6,2,3,4],[8,9,9,3,8,2,2],[5,7,8,6,3,5,5,2],[7,3,4,3,9,1,7],[8,6,0,8,3,8,9],[9,0,0,9,6,6],[1,0,4,5,1,2,6],[1,2,1,2,9,8,4,3,1],[3,8,9,3,9,0,5,5,4,8],[5,2,1,1,6,6,4],[5,5,7,6,9],[5,5,3,8,6],[5,4,7,3],[5,5,2,5,0],[5,5,8,2],[5,6,4,3,7,1],[5,6,7,0,3,8,5],[6,1,4,9,8,0],[5,8,6,3,8],[5,9,3,9,0,5],[6,0,2,1,5],[6,1,0,7,7],[6,1,8,4,3,1],[6,2,5,4,1,5,9],[5,4,2,5,8,7,1],[6,8,2,5,0,6,9],[7,5,4,9,5,7,1],[7,8,6,4,0,3],[7,8,3,3,5,2],[8,4,3,8,2,3],[8,9,6,7,0,2],[8,9,5,8,8,3],[9,2,2,5,5,5,3],[1,0,4,3,7,5,0,4],[6,1,0,8,2,8,7,1],[7,4,1,6,6,7,9,6],[7,2,8,5,5,1,6],[8,4,1,4],[9,3,1,7,5,1],[1,0,7,4,8,5],[4,0,7,2,7,4,0,9],[5,2,7,8,4,2,4],[5,3,8,0,2,2,6],[6,3,0,6,7],[5,8,9],[6,1,9,4,0,5],[6,2,6,5,5],[6,0,2,5,8],[5,9,7,3,8],[5,9,9,1,4],[6,1,9,7,8],[6,2,8,1,7],[6,3,6,7,6],[6,5,0],[6,5,8],[6,6,5],[4,9,0],[6,0,1],[6,8],[7,8],[7,7],[7,6]]
                            Ç€ - call the last link (1) as a monad for €ach = [13.598434005136,24.587387936000002,5.391714761,9.322699,8.298019,11.260295999999999,14.534129999999998,13.618053999999999,17.422819999999998,21.56454,5.1390766999999995,7.646235,5.985767999999999,8.151683,10.486686,10.360009999999999,12.96763,15.759611200000002,4.34066354,6.1131552000000005,6.561490000000001,6.82812,6.746187,6.76651,7.434018,7.902467799999999,7.881010000000001,7.639876999999999,7.72638,9.394199,5.9993018,7.8994349999999995,9.7886,9.752392,11.81381,13.9996049,4.177128,5.6948672,6.2172600000000005,6.633900000000001,6.758850000000001,7.09243,7.1193800000000005,7.360500000000001,7.458900000000001,8.336860000000001,7.5762339999999995,8.993822,5.7863552,7.343916999999999,8.608388999999999,9.00966,10.45126,12.129843099999999,3.893905548,5.211664,5.5769,5.538600000000001,5.473,5.525,5.582,5.6437100000000004,5.670385,6.149800000000001,5.8638,5.939050000000001,6.0215000000000005,6.1077,6.184310000000001,6.254159,5.425871,6.825069,7.549570999999999,7.8640300000000005,7.833520000000001,8.43823,8.967020000000002,8.95883,9.225553,10.437504,6.1082871,7.416679599999999,7.285515999999999,8.414,9.31751,10.7485,4.072740899999999,5.278423999999999,5.3802259999999995,6.3067,5.89,6.194050000000001,6.2655,6.0258,5.973800000000001,5.9914000000000005,6.1978,6.281700000000001,6.3676,6.5,6.58,6.65,4.9,6.01,6.800000000000001,7.800000000000001,7.7,7.6000000000000005]

" 1. veya 10. sıra olsunlar mı " kolaydır: ilk hane 1 veya 2 ise, 10. sıradır. Bu daha da golfe yardımcı olur mu yoksa biraz diziyi açmak daha mı ucuz?
Peter Taylor

@PeterTaylor farketmemişti, bu neredeyse kesinlikle bazı baytları koruyacak, teşekkürler!
Jonathan Allan,

3

Jöle , 116 bayt + 429.796016684433 Penaltı = 545.796016684433

“tẏØA5X¶tɱḅÐ-ı3OMm⁾¦ȷ #""*00-.Bı0FF_y¤ß÷!"&&)+5,=æ)8=Nc¡ÑÞŒŒŒÞßßñçðıȷñ÷Ø#,//6==@Nȷ*(6AR£ÑØøðñ÷ıııñ÷øþ !€ı#/-,‘+47÷12

Çevrimiçi deneyin!

Özellikle muhteşem bir şey, bir kod sayfa indeks listesi, “...‘biz eklemek bunların her birine (0 ile 249 arasındaki numaralar), 47 , +47ve sonra bölün 12 , ÷12.


3

Jöle , 164 bayt + 409.846 = 573.846

“?#4ß<Ʋƒ⁻µ`kḞÑ6{ɱ~.ṣ¬⁷Ḷlŀ⁸ẎṘ£ỌgfĖỌƒ⁻ḋN?ḤḞ{ị#qp⁵mp&WṘƙ=/rŻ-vn⁼ẊTị}W;!z€ȦMẊẇİ_D8ỴtṫQAẎḣṬr¥1J3Ƙ~ʋ$ĿẠ7þƭ8ṛM{ịḟƇỵ÷b?°6I@?Ȥ⁾d⁹DẈcȷv5ⱮAJb}øDȯRµ’Ds3Ḍ÷³×⁵$2R;6r⁵¤¤;15r18¤¤¦Y

Çevrimiçi deneyin!

Orada, her enerjinin ilk üç basamağının (takip eden sıfırlar dahil) birleştirilmiş hali olan sıkıştırılmış bir sayı vardır. Bu üç basamaklı sayıları içeren bir liste alıyorum ve Ds3Ḍardından her birini 100 ile bölüyorum ÷³. Sayıların bir kısmı sadece 10'a bölünmelidir, bu yüzden skoru hafifçe iyileştirmek için bir kısmını 10 ile çarptım (×⁵$2R;6r⁵¤¤;15r18¤¤¦ ).

Önceki sürüm :

Jöle , 50 bayt + 571.482 ceza = 621.482

“¡9;ẋkñ¬nƑḳ_gÐ.RḊụʠṁṬl⁾l>ɼXZĖSṠƈ;cḶ=ß³ṾAiʠʠɼZÞ⁹’DY

Çevrimiçi deneyin!

Her enerjiyi en yakın tek haneli tamsayıya yuvarlayın. Bir araya toplanmış bu verir 995989999958689999467777788889689999466777777889679999456656666666666657888899996778994556666666666677567888. “¡9;ẋkñ¬nƑḳ_gÐ.RḊụʠṁṬl⁾l>ɼXZĖSṠƈ;cḶ=ß³ṾAiʠʠɼZÞ⁹’bunu veren bir baz 250 numarasıdır. DY bu sayının rakamlarını newlines ile birleştirir.



3

J , 390 bayt + 183.319 Ceza = 573.319

d=.'5@-103659=-/-02247,...../////1-/1135,-...////0/0-/0124+--------.--....-.///00012.//012,--.-...--......,..///'
f=.'[ZG@=:U]JX-`~/PD~kB+XrjlKzx_hG~ynkq~1e5_k)+DMAY~nB\ M,y5YUOTZ`c.v}"*29JrVvsK~~6K*I<I?j'';F>y3:"~~3<DRZaz!ppf\'
p=.'tj1;p#Iq<M{^Z1c l~''@/q^aH9*~`J}~v8F~gQiGy8~%ye^F`Gt~-~G1ev>R4E$~F{/mKJ[S~HCrfxXkscWHku;t"c IWZF.n1l',9$' '
echo,.(_40+a.i.d)+(100%~_32+a.i.f)+1e4%~_32+a.i.p

Çevrimiçi deneyin!

Rakamları dört ondalık basamağa yuvarladım ve bunları tamsayı parçaları için bir listeye, ilk 2 fraksiyon rakamı için bir listeye ve ikinci 2 fraksiyon rakamı için bir listeye ayırdım. Her numarayı yazdırılabilir bir karakterle kodladım. Kod çözme için, bir karakterin ingerer ve fraksiyon parçalarını ilişkili karakter listelerinden çıkarın ve tekrar yüzdürme için birleştirin.

J , 602 bayt + 0 Ceza = 602

q=.'qy7?JOZp@''T1}Ciz={3L/0rHp/r}`M{m^ZHZSy55MYPBaNcV+\?A%/{eyQxQPkDs8W''@m$\6wZsV%KjI''_9"o\XMCP+vU=S3''c3\IKD@ovEW''4LX2O=>n&dgNktY><Ru_TvNpArL?}Y642=}5Hb"yYsD19$<OP2<|Jo)!8S`^9N3w{Q]968P2VF`[(2HOa%XL*V|,[8PcL)}w8"*l%JNC{amnCNx\yH73(pmJGCDq?8@D$ww{X`t0[o.`$''RB&eXiP|_u#9WBFS%U:3|O.U+is5E$A[c{1MpJ@Dw&^rpM_N:M^:o&!HPX9?0i}{j?%2W20z>Q?AOw!fuTWC"Q{-Er'
f=:3 :0
a=.0$0 while.*#y do.l=.1+{.y
a=.a,<' '-.~":}.l{.y
y=.l}.y
end.a
)
echo;(('.',~":"0)&.>_40+a.i.'5@-103659=-/-02247,...../////1-/1135,-...////0/0-/0124+--------.--....-.///00012.//012,--.-...--......,..///'),.(f 12,10#.inv 94x#._32+a.i.q),.<CR

Çevrimiçi deneyin!

Bu sefer biraz farklı bir yaklaşım için gittim. Numaraları 2 akışa böldüm - ilki, yalnızca basılabilir tek bir karakterle kodlanan tamsayı parçalarını içeriyor. İkinci akış tüm kesirli parçaları içerir. Rakamlar arasındaki tüm aralıkları kaldırdım ve her bir alt dizgiyi 1-9 uzunluğunda hazırladım (ilk kesriyi çikardım, hangisi 13 hane uzunluğundaydı). Sonra bu listeyi temel 94 numara olarak kodladım, karakter listesi olarak sundum.

Fiili tam olarak yeniden yazıldığında, yaklaşık 20 bayt kaydedilebilir.


2

Sakız , 403 + 9,12 = 412,12

00000000: 1551 5116 c030 04fb 7718 af20 e2fe 17db  .QQ..0..w.. ....
00000010: f2d1 454d 4322 cae7 d8d5 ef4d 142c db87  ..EMC".....M.,..
00000020: 5bdc 2bd8 785d 6cf4 22ec bc32 7167 f43c  [.+.x]l."..2qg.<
00000030: be38 8bf0 c4cb 8345 fb54 4759 9423 f8a6  .8.....E.TGY.#..
00000040: 2dd6 3b93 6919 3ee8 691b 8fba b758 5b47  -.;.i.>.i....X[G
00000050: 236b 6cfc 380b 1a3d 26c0 b278 de04 0845  #kl.8..=&..x...E
00000060: 85f7 c222 fdb0 288b f19d 4344 5a7b f503  ..."..(...CDZ{..
00000070: 6ada e011 1533 69f0 41f4 fdc8 64e8 be8d  j....3i.A...d...
00000080: e02a 0026 6c5d 3a83 7f70 2f1b ab88 8ca7  .*.&l]:..p/.....
00000090: 5fa8 e36a b64d 1425 f73a ee0c aab9 eb1a  _..j.M.%.:......
000000a0: 3b5f 1282 c9ba 9401 8c62 58b4 b5c7 6e24  ;_.......bX...n$
000000b0: 6d1c d7c4 aa7f c626 7e44 d569 8a21 c7d6  m......&~D.i.!..
000000c0: df65 d78f 1157 b495 4ea5 7b28 77ab 4035  .e...W..N.{(w.@5
000000d0: 9d45 561b fdae 9869 e34b d44c ea45 6b31  .EV....i.K.L.Ek1
000000e0: 46c7 63f1 ecfc bd03 645a 4f24 645a a4f6  F.c.....dZO$dZ..
000000f0: 1a56 ceab 7b33 ade1 3202 681b d19f a088  .V..{3..2.h.....
00000100: 1f7a 4b97 1c7d 9952 d1b5 21dc 571c d9dc  .zK..}.R..!.W...
00000110: 2702 a204 a254 f665 08e2 ed0a d451 c2a7  '....T.e.....Q..
00000120: 6344 df39 5c65 98f3 7092 d537 2bc3 897e  cD.9\e..p..7+..~
00000130: 25ac 9a34 7a17 b324 17fb 5238 64d9 79e6  %..4z..$..R8d.y.
00000140: cc94 a475 edbc 3675 6372 45d2 01ec c9ae  ...u..6ucrE.....
00000150: e44c 403c d1da 5eec 841e 6d73 acfd 6d6e  .L@<..^...ms..mn
00000160: 3f8d 94cb 4e39 507c 995a 4f3d ac94 9da8  ?...N9P|.ZO=....
00000170: afa5 cb13 2378 3994 da2d 0a2e 5a35 b754  ....#x9..-..Z5.T
00000180: 0943 9a0b 2b92 d151 1a6a 77a6 9c96 abb3  .C..+..Q.jw.....
00000190: ffc1 07                                  ...

Çevrimiçi deneyin!

Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.