Bir dizeyi bölümleme engelleme


11

İlham .

Sayılardan loluşan bir liste düşünün . İndeksinde bir blok işlemi tanımlama ilistesi litibaren arka arkaya 3 elemanları hareketli eylemi için ide lsona.

Misal:

l, i (1-indexing) -> l (after applying block operation at index i)
[1,2,3,4,5], 1 -> [4,5,1,2,3]
[1,2,3,4,5,6,7], 3 -> [1,2,6,7,3,4,5]

Sadece 0 ve 1'den oluşan bir liste göz önüne alındığında, zorluğunuz bölümleri sıfırlar önde olacak ve sadece blok işlemleri kullanılarak arkada olacak şekilde bölümlendirmektir. Çıktılar, listede uygulandıkları sıraya göre indeksler olmalıdır.

Bu liste için imkansız olduğu için [1,0,1,0]liste uzunluğunun en az 5 olacağı garanti edilmektedir.

Test senaryoları (1 endeksleme)

(başka geçerli çıktılar da vardır)

[1,1,1,0,0] -> [1]
[0,1,0,1,0] -> [1,2,1,1]
[0,0,0,1,1,1,0,0,0] -> [4]

Daha fazla test senaryosu oluşturmak için bu komut dosyasını kullanın . (sadece giriş. rplc ' ';','kısmı için kullanılan r e pl bir C çıkış virgül ile E boşluk)

Kazanma kriterleri

ana kazanan kriterler ve tie-breaker olduğunu. Özellikle:

  • Test durumu ( n_elem= 500, random_seed= {gizli değer}) olan en kısa çıkış uzunluğuna (en az blok işlem sayısı) sahip çözüm kazanır. Test durumuyla ( n_elem= 500, random_seed= 123456) çözümünüzü tamamlamak için çalıştırabilmeniz gerekir .
  • Bağlar olması durumunda, (benim için) 10 saniye içinde = {gizli değer} n_elemile 2'nin en büyük güç değerini işleyebilen çözüm random_seedkazanır.
  • Bağlar durumunda, bu test durumunda daha az zaman alan çözüm kazanır.

Korumalı alan gönderisi . (not) Doğrusal zamanlı doğrusal uzay çözümüm var, ancak uygulanması çok kolay olmasının yanı sıra çok büyük bir sabit faktöre sahip. Sabit faktörü azaltmak mümkündür, ancak o zaman uygulanması daha da zordur.
user202729

(Feragatname: Bağlantılı mücadeleyi
çözdüm

Açıklığa kavuşturmak için, çıktının mümkün olan en kısa çıktı olması gerekmez mi?
JungHwan Min

@JungHwanMin Doğru.
user202729

Yanıtlar:


8

Python 3 , (0.397 n + 3.58) adımlar

Tarafından 1000 noktalı polinom regresyonu numpy.polyfit.


  • Sürüm 1 için adım sayısı: 0.0546 n² + 2.80 n - 221
  • Sürüm 2 için adım sayısı: 0.0235 n² + 0.965 n - 74
  • Sürüm 3 için adım sayısı: 0.00965 n² + 2,35 n - 111
  • Sürüm 4 için adım sayısı: 1.08 n - 36.3
  • Sürüm 5 için adım sayısı: 0.397 n + 3.58

  • Sürüm 1 için gizli test senaryosu puanı: 14468
  • Sürüm 2 için gizli test senaryosu puanı: 5349
  • Sürüm 3 için gizli test senaryosu puanı: 4143
  • Sürüm 4: 450 için gizli test örneği puanı
  • Sürüm 5: 205 için gizli test örneği puanı

def partite(L):
	endgame5 = [9,9,1,9,0,0,1,9,
		0,1,0,1,0,1,1,9,
		0,0,1,0,0,0,1,0,
		0,0,0,1,0,0,0,9]
	endgame6 = [9,9,2,9,1,1,2,9,0,2,0,0,1,2,2,9,
		0,1,2,1,0,1,2,1,0,1,0,2,1,1,0,9,
		0,0,1,0,1,0,1,1,0,0,0,0,1,1,1,1,
		0,0,2,2,0,0,2,2,0,0,0,0,0,0,0,9]
	endgame = [9,9,3,9,2,2,3,9,1,0,3,0,2,0,3,9,0,1,3,3,2,2,3,0,1,0,1,0,2,1,0,9,
		0,0,2,1,0,0,2,2,1,0,1,2,0,0,0,2,0,1,3,3,3,3,3,0,1,1,1,1,1,3,0,9,
		0,0,0,0,1,0,1,1,1,0,3,0,1,0,1,0,0,1,0,0,1,1,0,0,1,0,0,0,2,0,1,0,
		0,0,2,0,0,0,2,0,0,0,2,0,0,0,2,0,0,0,3,0,3,0,3,0,3,0,2,3,3,0,0,9]
	offset = 1
	steps = []
	def update(L,steps,ind):
		steps.append(offset + ind)
		if 0 <= ind and ind+3 < len(L):
			return (steps,L[:ind]+L[ind+3:]+L[ind:ind+3])
		else:
			print(offset,ind,L)
			raise
	if len(L) == 5:
		while endgame5[L[0]*16+L[1]*8+L[2]*4+L[3]*2+L[4]] != 9:
			steps, L = update(L,steps,endgame5[L[0]*16+L[1]*8+L[2]*4+L[3]*2+L[4]])
		return steps
	if len(L) == 6:
		while endgame6[L[0]*32+L[1]*16+L[2]*8+L[3]*4+L[4]*2+L[5]] != 9:
			steps, L = update(L,steps,endgame6[L[0]*32+L[1]*16+L[2]*8+L[3]*4+L[4]*2+L[5]])
		return steps
	if 1 not in L:
		return []
	while len(L) > 7 and 0 in L:
		wf_check = len(L)
		while L[0] != 0:
			pos = [-1]
			wf_check2 = -1
			while True:
				i = pos[-1]+1
				while i < len(L):
					if L[i] == 0:
						pos.append(i)
						i += 1
					else:
						i += 3
				assert len(pos) > wf_check2
				wf_check2 = len(pos)
				space = (pos[-1]-len(L)+1)%3
				ind = -1
				tail = pos.pop()
				i = len(L)-1
				while i >= 0:
					if tail == i:
						while tail == i:
							i -= 1
							tail = pos.pop() if pos else -1
						i -= 2
					elif i < len(L)-3 and L[i+space] == 0:
						ind = i
						break
					else:
						i -= 1
				if ind == -1:
					break
				steps, L = update(L, steps, ind)
				pos = pos or [-1]
			if L[0] == 0:
				break
			pos = [-1]
			while L[0] != 0:
				pos = [-1]
				found = False
				for i in range(1,len(L)):
					if L[i] == 0:
						if i%3 == (pos[-1]+1)%3:
							pos.append(i)
						else:
							found = found or i
				if found > len(L)-4:
					found = False
				if not found:
					break
				triple = []
				for i in range(1,len(L)-1):
					if L[i-1] == 1 and L[i] == 1 and L[i+1] == 1:
						triple.append(i)
					if len(triple) > 3:
						break
				space = (pos[-1]-len(L)+1)%3
				if space == 0:
					if found >= 2 and found-2 not in pos and found-1 not in pos:
						# ... _ 1 _ [0] 0 ...
						if found-2 in triple:
							triple.remove(found-2)
						if found-3 in triple:
							triple.remove(found-3)
						if L[-1] == 1:
							steps, L = update(L, steps, found-2)
							steps, L = update(L, steps, len(L)-4)
							steps, L = update(L, steps, len(L)-4)
						elif triple:
							steps, L = update(L, steps, found-2)
							if found < triple[0]:
								triple[0] -= 3
							steps, L = update(L, steps, triple[0]-1)
							steps, L = update(L, steps, len(L)-4)
						else:
							break
						assert L[-3] == 0
					elif found >= 1 and found-1 not in pos and found+1 not in pos:
						# ... _ 1 [0] _ 0 ...
						if found-2 in triple:
							triple.remove(found-2)
						if L[-2] == 1 and L[-1] == 1:
							steps, L = update(L, steps, found-1)
							steps, L = update(L, steps, len(L)-5)
							steps, L = update(L, steps, len(L)-5)
						elif triple:
							steps, L = update(L, steps, found-1)
							if found < triple[0]:
								triple[0] -= 3
							steps, L = update(L, steps, triple[0]-1)
							steps, L = update(L, steps, len(L)-5)
						elif L[-1] == 1:
							steps, L = update(L, steps, found-1)
							steps, L = update(L, steps, len(L)-4)
							steps, L = update(L, steps, len(L)-4)
							steps, L = update(L, steps, len(L)-4)
						else:
							break
						assert L[-3] == 0
					else:
						break
				elif space == 1:
					# ... 1 1 [0] 0 ...
					if found >= 2 and found-2 not in pos and found-1 not in pos:
						if found-2 in triple:
							triple.remove(found-2)
						if found-3 in triple:
							triple.remove(found-3)
						if triple:
							steps, L = update(L, steps, found-2)
							if found < triple[0]:
								triple[0] -= 3
							steps, L = update(L, steps, triple[0]-1)
							steps, L = update(L, steps, len(L)-5)
						elif L[-2] == 1 and L[-1] == 1:
							steps, L = update(L, steps, found-2)
							steps, L = update(L, steps, len(L)-4)
							steps, L = update(L, steps, len(L)-5)
						else:
							break
						assert L[-2] == 0
					else:
						break
				else:
					if found+1 not in pos and found+2 not in pos:
						# ... 0 [0] _ 1 _ ...
						if found+2 in triple:
							triple.remove(found+2)
						if found+3 in triple:
							triple.remove(found+3)
						if L[-2] == 1 and L[-1] == 1:
							steps, L = update(L, steps, found)
							steps, L = update(L, steps, len(L)-5)
						elif L[-1] == 1:
							steps, L = update(L, steps, found)
							steps, L = update(L, steps, len(L)-4)
							steps, L = update(L, steps, len(L)-4)
						elif triple:
							steps, L = update(L, steps, triple[0]-1)
							if triple[0] < found:
								found -= 3
							steps, L = update(L, steps, found)
							steps, L = update(L, steps, len(L)-5)
						else:
							break
						assert L[-1] == 0
					elif found >= 1 and found-1 not in pos and found+1 not in pos:
						# ... 0 _ [0] 1 _ ...
						if found+2 in triple:
							triple.remove(found+2)
						if L[-1] == 1:
							steps, L = update(L, steps, found-1)
							steps, L = update(L, steps, len(L)-4)
						elif triple:
							steps, L = update(L, steps, triple[0]-1)
							if triple[0] < found:
								found -= 3
							steps, L = update(L, steps, found-1)
							steps, L = update(L, steps, len(L)-4)
						else:
							break
						assert L[-1] == 0
					else:
						break
			if L[0] == 0:
				break
			if 0 in L[::3]:
				assert L[::3].index(0) < wf_check
				wf_check = L[::3].index(0)
			steps, L = update(L, steps, 0)
		assert L[0] == 0
		offset += L.index(1)
		del L[:L.index(1)]
		continue
	if 0 in L:
		offset -= 7-len(L)
		L = [0]*(7-len(L))+L
		assert(len(L) == 7)
		while endgame[L[0]*64+L[1]*32+L[2]*16+L[3]*8+L[4]*4+L[5]*2+L[6]] != 9:
			steps, L = update(L,steps,endgame[L[0]*64+L[1]*32+L[2]*16+L[3]*8+L[4]*4+L[5]*2+L[6]])
	return steps

Çevrimiçi deneyin!


3

Python 3, n = 500 için ~ 179 adım (ortalama)

Sezgisel bir açgözlü yaklaşım. Biraz yavaş ama yine de çalışıyor. Küçük boyutlar için en uygun çözücüyü kullanır.

def incomplete_groups(l):
    r = 0
    ones = 0
    for x in l:
        if x == "1":
            ones += 1
        else:
            if ones % 3:
                r += 1
            ones = 0
    # Ones at the end don't count as an incomplete group.

    return r

def move(l, i):
    return l[:i] + l[i+3:] + l[i:i+3]

def best_pos(l, hist):
    r = []
    cleanup = incomplete_groups(l) == 0

    candidates = []
    for i in range(len(l) - 3):
        block = l[i:i+3]
        if block == "111" and cleanup:
            return i
        elif block == "111":
            continue

        new = move(l, i)
        bad_start = i < 3 and "10" in l[:3]
        candidates.append((new not in hist, -incomplete_groups(new), bad_start, block != "000", i))

    candidates.sort(reverse=True)
    return candidates[0][-1]

def done(l):
    return list(l) == sorted(l)



class IDAStar:
    def __init__(self, h, neighbours):
        """ Iterative-deepening A* search.

        h(n) is the heuristic that gives the cost between node n and the goal node. It must be admissable, meaning that h(n) MUST NEVER OVERSTIMATE the true cost. Underestimating is fine.

        neighbours(n) is an iterable giving a pair (cost, node, descr) for each node neighbouring n
        IN ASCENDING ORDER OF COST. descr is not used in the computation but can be used to
        efficiently store information about the path edges (e.g. up/left/right/down for grids).
        """

        self.h = h
        self.neighbours = neighbours
        self.FOUND = object()


    def solve(self, root, is_goal, max_cost=None):
        """ Returns the shortest path between the root and a given goal, as well as the total cost.
        If the cost exceeds a given max_cost, the function returns None. If you do not give a
        maximum cost the solver will never return for unsolvable instances."""

        self.is_goal = is_goal
        self.path = [root]
        self.is_in_path = {root}
        self.path_descrs = []
        self.nodes_evaluated = 0

        bound = self.h(root)

        while True:
            t = self._search(0, bound)
            if t is self.FOUND: return self.path, self.path_descrs, bound, self.nodes_evaluated
            if t is None: return None
            bound = t

    def _search(self, g, bound):
        self.nodes_evaluated += 1

        node = self.path[-1]
        f = g + self.h(node)
        if f > bound: return f
        if self.is_goal(node): return self.FOUND

        m = None # Lower bound on cost.
        for cost, n, descr in self.neighbours(node):
            if n in self.is_in_path: continue

            self.path.append(n)
            self.is_in_path.add(n)
            self.path_descrs.append(descr)
            t = self._search(g + cost, bound)

            if t == self.FOUND: return self.FOUND
            if m is None or (t is not None and t < m): m = t

            self.path.pop()
            self.path_descrs.pop()
            self.is_in_path.remove(n)

        return m

def h(l):
    """Number of groups of 1 with length <= 3 that come before a zero."""
    h = 0
    num_ones = 0
    complete_groups = 0
    incomplete_groups = 0
    for x in l:
        if x == "1":
            num_ones += 1
        else:
            while num_ones > 3:
                num_ones -= 3
                h += 1
                complete_groups += 1
            if num_ones > 0:
                h += 1
                incomplete_groups += 1
            num_ones = 0

    return complete_groups + incomplete_groups

def neighbours(l):
    inc_groups = incomplete_groups(l)
    final = inc_groups == 0

    candidates = []
    for i in range(len(l) - 3):
        left = l[:i]
        block = l[i:i+3]
        right = l[i+3:]
        cand = (1, left + right + block, i)

        # Optimal choice.
        if final and (block != "111" or i >= len(l.rstrip("1"))):
            continue

        candidates.append(cand)

    candidates.sort(key=lambda c: c[2], reverse=True)

    return candidates


def is_goal(l):
    return all(l[i] <= l[i+1] for i in range(len(l)-1))

opt_solver = IDAStar(h, neighbours)

def partite(l):
    if isinstance(l, list):
        l = "".join(map(str, l))
    if len(l) < 10:
        return [i + 1 for i in opt_solver.solve(l, is_goal)[1]]
    moves = []
    hist = [l]
    while not done(l):
        i = best_pos(l, hist)
        l = move(l, i)
        moves.append(i+1)
        hist.append(l)
    return moves
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.