Bir n
pozitif sayılar 2^n
kümesi alt kümelere sahiptir . Bu alt grupların hiçbiri aynı toplamı yoksa, "iyi" bir küme olarak adlandırırız. {2, 4, 5, 8}
böyle güzel bir set. Alt kümelerden hiçbiri aynı toplamda olmadığından, alt kümeleri toplama göre sıralayabiliriz:
[{}, {2}, {4}, {5}, {2, 4}, {2, 5}, {8}, {4, 5}, {2, 8}, {2, 4, 5}, {4, 8}, {5, 8}, {2, 4, 8}, {2, 5, 8}, {4, 5, 8}, {2, 4, 5, 8}]
Numaraları artan sırayla [2, 4, 5, 8]
sembollerle etiketlersek [a, b, c, d]
, aşağıdaki soyut sıralamayı alırız:
[{}, {a}, {b}, {c}, {a, b}, {a, c}, {d}, {b, c}, {a, d}, {a, b, c}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}]
Başka bir güzel pozitif sayı kümesi, aynı soyut sıralamaya veya farklı bir numaraya sahip olabilir. Örneğin, [3, 4, 8, 10]
farklı bir soyut sıraya sahip hoş bir set:
[{}, {a}, {b}, {a, b}, {c}, {d}, {a, c}, {b, c}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}]
Bu zorlukla, güzel n
pozitif sayılar kümelerinin farklı soyut sıralarını saymalısınız. Bu dizi OEIS A009997'dir ve başlangıçta bilinen bilinen değerler n=1
şunlardır:
1, 1, 2, 14, 516, 124187, 214580603
Örneğin n=3
, aşağıdakiler iki olası soyut düzendir:
[{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}]
[{}, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}]
Çünkü n=4
, aşağıdaki 14 olası soyut emir, artı bu emir ile güzel bir örnek:
[{}, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {d}, {a, d}, {b, d}, {a, b, d}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [8, 4, 2, 1]
[{}, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {d}, {a, b, c}, {a, d}, {b, d}, {a, b, d}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [10, 6, 3, 2]
[{}, {a}, {b}, {a, b}, {c}, {a, c}, {d}, {b, c}, {a, d}, {a, b, c}, {b, d}, {a, b, d}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [10, 7, 4, 2]
[{}, {a}, {b}, {a, b}, {c}, {a, c}, {d}, {a, d}, {b, c}, {a, b, c}, {b, d}, {a, b, d}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [8, 6, 4, 1]
[{}, {a}, {b}, {a, b}, {c}, {d}, {a, c}, {b, c}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [10, 8, 4, 3]
[{}, {a}, {b}, {a, b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [8, 7, 4, 2]
[{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [10, 4, 3, 2]
[{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {d}, {a, b, c}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [8, 4, 3, 2]
[{}, {a}, {b}, {c}, {a, b}, {a, c}, {d}, {b, c}, {a, d}, {a, b, c}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [8, 5, 4, 2]
[{}, {a}, {b}, {c}, {a, b}, {a, c}, {d}, {a, d}, {b, c}, {a, b, c}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [10, 7, 6, 2]
[{}, {a}, {b}, {c}, {a, b}, {d}, {a, c}, {b, c}, {a, d}, {b, d}, {a, b, c}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [8, 6, 4, 3]
[{}, {a}, {b}, {c}, {a, b}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [10, 8, 6, 3]
[{}, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c}, {a, d}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [8, 6, 5, 4]
[{}, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [7, 6, 5, 3]
Aşağıdaki, geçerli bir soyut sipariş değildir:
{}, {a}, {b}, {c}, {d}, {a,b}, {e}, {a,c}, {b,c}, {a,d}, {a,e}, {b,d}, {b,e}, {c,d}, {a,b,c}, {a,b,d}, {c,e}, {d,e}, {a,b,e}, {a,c,d}, {a,c,e}, {b,c,d}, {b,c,e}, {a,d,e}, {b,d,e}, {a,b,c,d}, {c,d,e}, {a,b,c,e}, {a,b,d,e}, {a,c,d,e}, {b,c,d,e}, {a,b,c,d,e}
Bu sipariş şu anlama gelir:
d < a + b
b + c < a + d
a + e < b + d
a + b + d < c + e
Bu eşitsizliklerin toplanması şunları verir:
2a + 2b + c + 2d + e < 2a + 2b + c + 2d + e
bu bir çelişkidir. Kodunuz bu siparişi saymamalıdır. Bu tür karşı örnekler ilk önce görünür n=5
. Örnek Bu çalışmada , sayfa 3, örneğin 2.5.
Bu sıralama, A < B
kendisinden ve arasındaki A U C < B U C
herhangi bir C
ayrılık için, bunun ima edilmesine rağmen geçersizdir .A
B
Kodunuz veya programınız n=4
göndermeden önce üzerinde çalışmasını sağlayacak kadar hızlı olmalıdır .
Gönderimler her zamanki gibi programlar, işlevler vb. Olabilir.
Her zaman olduğu gibi Standart Loopholes yasaktır. Bu kod golf, bayt cinsinden en kısa cevap kazanıyor. Yorumlarda açıklayıcı sorular sormaktan çekinmeyin.