Toplam kare farkı


15

İlk on doğal sayının karelerinin toplamı, 12+22++102=385

İlk on doğal sayının toplamının karesi,

(1+2+...+10)2=552=3025

Dolayısıyla, ilk on doğal sayının karelerinin toplamı ile toplamın karesi arasındaki fark

3025385=2640

Belirli bir n girdisi için, ilk n doğal sayının karelerinin toplamı ile toplamın karesi arasındaki farkı bulun.

Test senaryoları

1       => 0
2       => 4
3       => 22
10      => 2640
24      => 85100
100     => 25164150

Bu zorluk ilk olarak Project Euler # 6'da duyuruldu .

Kazanma Kriterleri

  • Negatif veya sıfır girişli davranışın ne olması gerektiği hakkında hiçbir kural yoktur.

  • En kısa cevap kazanır.


4
Bu meydan okuma kazanan bir kritere ihtiyaç duyuyor (örneğin, kod
golfü

2
Bu, bu sorunun bir alt kümesidir
caird coinheringaahing

1
Sekans 0 indekslenebilir mi? yani doğal sayılar n?
Jo King


3
@Enigma Bunun hedefin bir kopyası olduğunu düşünmüyorum, çünkü burada birçok cevap bunun cevapları olarak kolayca geçmiyor, bu yüzden bir şeyler ekliyor.
Jonathan Allan

Yanıtlar:


10

Jöle ,  5  4 bayt

Ḋ²ḋṖ

Çevrimiçi deneyin!

Nasıl?

i=2n(i2(i1)) uygular ...

Ḋ²ḋṖ - Link: non-negative integer, n
Ḋ    - dequeue (implicit range)       [2,3,4,5,...,n]
 ²   - square (vectorises)            [4,9,16,25,...,n*n]
   Ṗ - pop (implicit range)           [1,2,3,4,...,n-1]
  ḋ  - dot product                    4*1+9*2+16*3+25*4+...+n*n*(n-1)


8

APL (Dyalog Unicode) , 10 bayt

1⊥⍳×⍳×1-⍨⍳

Çevrimiçi deneyin!

Nasıl çalışır

1⊥⍳×⍳×1-⍨⍳
  ⍳×⍳×1-⍨⍳  Compute (x^3 - x^2) for 1..n
1          Sum

"Toplam kare" nin "küp toplamına" eşit olduğu gerçeğini kullanır.


Benim için 1⊥⍳ × ⍳ × 1-⍨⍳ bir işlev değildir; 1⊥⍳ × ⍳ × 1-⍨⍳10'u denedim ve benim için derlemedim ...
RosLuP

1
@RosLuP İlk önce bir değişkene (TIO bağlantısında yaptığım gibi) atamanız veya bir çift parantez içine almanız gerekir (1⊥⍳×⍳×1-⍨⍳)10.
Bubbler

7

TI-Basic (TI-83 serisi), 12 11 bayt

sum(Ans² nCr 2/{2,3Ans

Uygular (n22)(12+13n) . Girdiyi alır Ans: örneğin, 10:prgmXgirdinin sonucunu hesaplamak için çalıştırın 10.


Güzel kullanımı nCr!
Lynn



5

Kömür , 12 10 bayt

IΣEN×ιX⊕ι²

(1nx)2=1nx3(1nx)21nx2=1n(x3x2)=1n(x1)x2=0n1x(x+1)2.

   N        Input number
  E         Map over implicit range i.e. 0 .. n - 1
        ι   Current value
       ⊕    Incremented
         ²  Literal 2
      X     Power
     ι      Current value
    ×       Multiply
 Σ          Sum
I           Cast to string
            Implicitly print


4

Japt -x, 9 8 5 4 bytes

õ²í*

Try it


Explanation

õ        :Range [1,input]
 ²       :Square each
  í      :Interleave with 0-based indices
   *     :Reduce each pair by multiplication
         :Implicit output of the sum of the resulting array

3

APL(Dyalog), 17 bytes

{+/(¯1↓⍵)×1↓×⍨⍵}⍳

(Much longer) Port of Jonathan Allan's Jelly answer.

Try it online!


Go tacit and combine the drops: +/¯1↓⍳×1⌽⍳×⍳
Adám

3

APL (Dyalog), 16 bytes

((×⍨+/)-(+/×⍨))⍳

Try it online!

 (×⍨+/)            The square  self) of the sum (+ fold)
       -           minus
        (+/×⍨)     the sum of the square
(             )⍳   of [1, 2,  input].

(+/×⍨)1⊥×⍨ as per tip.
Adám

1
A further byte could be saved by keeping the inside (×⍨1⊥⍳)-⍳+.×⍳
Kritixi Lithos

3

Mathematica, 21 17 bytes

-4 bytes thanks to alephalpha.

(3#+2)(#^3-#)/12&

Pure function. Takes an integer as input and returns an integer as output. Just implements the polynomial, since Sums, Ranges, Trs, etc. take up a lot of bytes.



@alephalpha Thanks!
LegionMammal978

It's possible to get there without just evaluating the polynomial: #.(#^2-#)&@*Range implements another common solution. (But it's also 17 bytes.) And we can implement the naive algorithm in 18 bytes: Tr@#^2-#.#&@*Range.
Misha Lavrov



3

05AB1E, 8 bytes

ÝDOnsnO-

Explanation:

ÝDOnsnO-     //Full program
Ý            //Push [0..a] where a is implicit input
 D           //Duplicate top of stack
  On         //Push sum, then square it
    s        //Swap top two elements of stack
     nO      //Square each element, then push sum
       -     //Difference (implicitly printed)

Try it online!


LDnOsOn- was my first attempt too.
Magic Octopus Urn

3

C, C++, 46 40 37 bytes ( #define ), 50 47 46 bytes ( function )

-1 byte thanks to Zacharý

-11 bytes thanks to ceilingcat

Macro version :

#define F(n)n*n*~n*~n/4+n*~n*(n-~n)/6

Function version :

int f(int n){return~n*n*n*~n/4+n*~n*(n-~n)/6;}

Thoses lines are based on thoses 2 formulas :

Sum of numbers between 1 and n = n*(n+1)/2
Sum of squares between 1 and n = n*(n+1)*(2n+1)/6

So the formula to get the answer is simply (n*(n+1)/2) * (n*(n+1)/2) - n*(n+1)*(2n+1)/6

And now to "optimize" the byte count, we break parenthesis and move stuff around, while testing it always gives the same result

(n*(n+1)/2) * (n*(n+1)/2) - n*(n+1)*(2n+1)/6 => n*(n+1)/2*n*(n+1)/2 - n*(n+1)*(2n+1)/6 => n*(n+1)*n*(n+1)/4 - n*(n+1)*(2n+1)/6

Notice the pattern p = n*n+1 = n*n+n, so in the function, we declare another variable int p = n*n+n and it gives :

p*p/4 - p*(2n+1)/6

For p*(p/4-(2*n+1)/6) and so n*(n+1)*(n*(n+1)/4 - (2n+1)/6), it works half the time only, and I suspect integer division to be the cause ( f(3) giving 24 instead of 22, f(24) giving 85200 instead of 85100, so we can't factorize the macro's formula that way, even if mathematically it is the same.

Both the macro and function version are here because of macro substitution :

F(3) gives 3*3*(3+1)*(3+1)/4-3*(3+1)*(2*3+1)/6 = 22
F(5-2) gives 5-2*5-2*(5-2+1)*(5-2+1)/4-5-2*(5-2+1)*(2*5-2+1)/6 = -30

and mess up with the operator precedence. the function version does not have this problem


1
You could fix up the problem with the macros at the cost of A LOT of bytes by replacing all the n with (n). Also, F(n) n=>F(n)n regardless.
Zacharý

It's possible to rearrange return p*p/4-p*(n-~n)/6 to return(p/4-(n-~n)/6)*p.
Zacharý

@Zacharý No, it gives me bad results sometimes like 24 instead of 22 for input "3", or 85200 instead of 85100 for input "24". I suspect integer division to be the cause of that
HatsuPointerKun

Ugh, always forget about that.
Zacharý


2

Pyth, 7 bytes

sm**hdh

Try it online here.

Uses the formula in Neil's answer.

sm**hdhddQ   Implicit: Q=eval(input())
             Trailing ddQ inferred
 m       Q   Map [0-Q) as d, using:
    hd         Increment d
   *  hd       Multiply the above with another copy
  *     d      Multiply the above by d
s            Sum, implicit print 



2

05AB1E, 6 bytes

LnDƶαO

Try it online!

Explanation

L         # push range [1 ... input]
 n        # square each
  D       # duplicate
   ƶ      # lift, multiply each by its 1-based index
    α     # element-wise absolute difference
     O    # sum

Some other versions at the same byte count:

L<ān*O
Ln.āPO
L¦nā*O



2

MathGolf, 6 bytes

{î²ï*+

Try it online!

Calculates k=1n(k2(k1))

Explanation:

{       Loop (implicit) input times
 î²     1-index of loop squared
    *   Multiplied by
   ï    The 0-index of the loop
     +  And add to the running total

2

Clojure, 58 bytes

(fn[s](-(Math/pow(reduce + s)2)(reduce +(map #(* % %)s))))

Try it online!


Edit: I misunderstood the question

Clojure, 55, 35 bytes

#(* %(+ 1 %)(- % 1)(+(* 3 %)2)1/12)

Try it online!


1
Thanks for fixing that. And just a heads up regarding your last entry, (apply + is shorter than (reduce +.
Carcigenicate

@Carcigenicate Thanks!
TheGreatGeek

1
Could you edit your permalink to run one of the test cases? As it is, I doesn't help people who don't know Clojure.
Dennis

2

cQuents, 17 15 bytes

b$)^2-c$
;$
;$$

Try it online!

Explanation

 b$)^2-c$     First line
:             Implicit (output nth term in sequence)
 b$)          Each term in the sequence equals the second line at the current index
    ^2        squared
      -c$     minus the third line at the current index

;$            Second line - sum of integers up to n
;$$           Third line - sum of squares up to n

1

APL(NARS), 13 chars, 26 bytes

{+/⍵×⍵×⍵-1}∘⍳

use the formula Sum'w=1..n'(ww(w-1)) possible i wrote the same some other wrote + or - as "1⊥⍳×⍳×⍳-1"; test:

  g←{+/⍵×⍵×⍵-1}∘⍳
  g 0
0
  g 1
0
  g 2
4
  g 3
22
  g 10
2640


1

QBASIC, 45 44 bytes

Going pure-math saves 1 byte!

INPUT n
?n^2*(n+1)*(n+1)/4-n*(n+1)*(2*n+1)/6

Try THAT online!


Previous, loop-based answer

INPUT n
FOR q=1TO n
a=a+q^2
b=b+q
NEXT
?b^2-a

Try it online!

Note that the REPL is a bit more expanded because the interpreter fails otherwise.


1

JAEL, 13 10 bytes

#&àĝ&oȦ

Try it online!

Explanation (generated automatically):

./jael --explain '#&àĝ&oȦ'
ORIGINAL CODE:  #&àĝ&oȦ

EXPANDING EXPLANATION:
à => `a
ĝ => ^g
Ȧ => .a!

EXPANDED CODE:  #&`a^g&o.a!

COMPLETED CODE: #&`a^g&o.a!,

#          ,            repeat (p1) times:
 &                              push number of iterations of this loop
  `                             push 1
   a                            push p1 + p2
    ^                           push 2
     g                          push p2 ^ p1
      &                         push number of iterations of this loop
       o                        push p1 * p2
        .                       push the value under the tape head
         a                      push p1 + p2
          !                     write p1 to the tapehead
            ␄           print machine state

1

05AB1E, 6 bytes

LDOšnÆ

Try it online!

Explanation:

           # implicit input (example: 3)
L          # range ([1, 2, 3])
 DOš       # prepend the sum ([6, 1, 2, 3])
    n      # square each ([36, 1, 4, 9])
     Æ     # reduce by subtraction (22)
           # implicit output

Æ isn't useful often, but this is its time to shine. This beats the naïve LOnILnO- by two whole bytes.

Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.