topluluk
Bu, ilgili modellerden oluşan bir topluluğu çalıştırır. Bireysel modeller farklı miktarlarda geçmiş düşünür ve her zaman beklenen ödeme farkını optimize edecek hareketi seçebilir veya beklenen ödeme farkıyla orantılı olarak bir hamle seçebilir.
Topluluğun her üyesi daha sonra tercih ettikleri hamleye oy verir. Rakibinden ne kadar kazandıklarına eşit sayıda oy alırlar (bu, korkunç modellerin olumsuz oy alacağı anlamına gelir). Hangi hamleyi kazanırsa, oylama seçilir.
(Muhtemelen oylarını hamleler arasında her birini ne kadar iyilikleriyle orantılı olarak bölmeliler, ama şu anda bunu yapmak için yeterince umursamıyorum.)
EvaluaterBot ve PatternFinder dışında şimdiye kadar yayınlanan her şeyi yener. (Bire bir, EvaluaterBot'u yener ve PatternFinder'a kaybeder).
from collections import defaultdict
import random
class Number6:
class Choices:
def __init__(self, C = 0, N = 0, D = 0):
self.C = C
self.N = N
self.D = D
def __init__(self, strategy = "maxExpected", markov_order = 3):
self.MARKOV_ORDER = markov_order;
self.my_choices = ""
self.opponent = defaultdict(lambda: self.Choices())
self.choice = None # previous choice
self.payoff = {
"C": { "C": 3-3, "N": 4-1, "D": 0-5 },
"N": { "C": 1-4, "N": 2-2, "D": 3-2 },
"D": { "C": 5-0, "N": 2-3, "D": 1-1 },
}
self.total_payoff = 0
# if random, will choose in proportion to payoff.
# otherwise, will always choose argmax
self.strategy = strategy
# maxExpected: maximize expected relative payoff
# random: like maxExpected, but it chooses in proportion to E[payoff]
# argmax: always choose the option that is optimal for expected opponent choice
def update_opponent_model(self, last):
for i in range(0, self.MARKOV_ORDER):
hist = self.my_choices[i:]
self.opponent[hist].C += ("C" == last)
self.opponent[hist].N += ("N" == last)
self.opponent[hist].D += ("D" == last)
def normalize(self, counts):
sum = float(counts.C + counts.N + counts.D)
if 0 == sum:
return self.Choices(1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0)
return self.Choices(
counts.C / sum, counts.N / sum, counts.D / sum)
def get_distribution(self):
for i in range(0, self.MARKOV_ORDER):
hist = self.my_choices[i:]
#print "check hist = " + hist
if hist in self.opponent:
return self.normalize(self.opponent[hist])
return self.Choices(1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0)
def choose(self, dist):
payoff = self.Choices()
# We're interested in *beating the opponent*, not
# maximizing our score, so we optimize the difference
payoff.C = (3-3) * dist.C + (4-1) * dist.N + (0-5) * dist.D
payoff.N = (1-4) * dist.C + (2-2) * dist.N + (3-2) * dist.D
payoff.D = (5-0) * dist.C + (2-3) * dist.N + (1-1) * dist.D
# D has slightly better payoff on uniform opponent,
# so we select it on ties
if self.strategy == "maxExpected":
if payoff.C > payoff.N:
return "C" if payoff.C > payoff.D else "D"
return "N" if payoff.N > payoff.D else "D"
elif self.strategy == "randomize":
payoff = self.normalize(payoff)
r = random.uniform(0.0, 1.0)
if (r < payoff.C): return "C"
return "N" if (r < payoff.N) else "D"
elif self.strategy == "argMax":
if dist.C > dist.N:
return "D" if dist.C > dist.D else "N"
return "C" if dist.N > dist.D else "N"
assert(0) #, "I am not a number! I am a free man!")
def update_history(self):
self.my_choices += self.choice
if len(self.my_choices) > self.MARKOV_ORDER:
assert(len(self.my_choices) == self.MARKOV_ORDER + 1)
self.my_choices = self.my_choices[1:]
def round(self, last):
if last: self.update_opponent_model(last)
dist = self.get_distribution()
self.choice = self.choose(dist)
self.update_history()
return self.choice
class Ensemble:
def __init__(self):
self.models = []
self.votes = []
self.prev_choice = []
for order in range(0, 6):
self.models.append(Number6("maxExpected", order))
self.models.append(Number6("randomize", order))
#self.models.append(Number6("argMax", order))
for i in range(0, len(self.models)):
self.votes.append(0)
self.prev_choice.append("D")
self.payoff = {
"C": { "C": 3-3, "N": 4-1, "D": 0-5 },
"N": { "C": 1-4, "N": 2-2, "D": 3-2 },
"D": { "C": 5-0, "N": 2-3, "D": 1-1 },
}
def round(self, last):
if last:
for i in range(0, len(self.models)):
self.votes[i] += self.payoff[self.prev_choice[i]][last]
# vote. Sufficiently terrible models get negative votes
C = 0
N = 0
D = 0
for i in range(0, len(self.models)):
choice = self.models[i].round(last)
if "C" == choice: C += self.votes[i]
if "N" == choice: N += self.votes[i]
if "D" == choice: D += self.votes[i]
self.prev_choice[i] = choice
if C > D and C > N: return "C"
elif N > D: return "N"
else: return "D"
Test Çerçevesi
Başka birinin faydalı bulması durumunda, bireysel eşleşmelere bakmak için bir test çerçevesi. Python2. İlgilendiğiniz tüm rakipleri opponents.py'ye koyun ve Ensemble'a olan referansları kendiniz değiştirin.
import sys, inspect
import opponents
from ensemble import Ensemble
def count_payoff(label, them):
if None == them: return
me = choices[label]
payoff = {
"C": { "C": 3-3, "N": 4-1, "D": 0-5 },
"N": { "C": 1-4, "N": 2-2, "D": 3-2 },
"D": { "C": 5-0, "N": 2-3, "D": 1-1 },
}
if label not in total_payoff: total_payoff[label] = 0
total_payoff[label] += payoff[me][them]
def update_hist(label, choice):
choices[label] = choice
opponents = [ x[1] for x
in inspect.getmembers(sys.modules['opponents'], inspect.isclass)]
for k in opponents:
total_payoff = {}
for j in range(0, 100):
A = Ensemble()
B = k()
choices = {}
aChoice = None
bChoice = None
for i in range(0, 100):
count_payoff(A.__class__.__name__, bChoice)
a = A.round(bChoice)
update_hist(A.__class__.__name__, a)
count_payoff(B.__class__.__name__, aChoice)
b = B.round(aChoice)
update_hist(B.__class__.__name__, b)
aChoice = a
bChoice = b
print total_payoff