İşte nispeten basit iki boyutlu dizi zorluğu.
625 ayak askerin savaş alanını hayal edin. Sen komuta garip asker, ama ne yazık ki gücü bile birlikleri size ağır. Neyse ki, askerlerin gizli bir gücü var: Eğer her bir tek birliğin ve onları çevreleyen tek müttefiklerin gücü gizli bir güç numarasıyla bölünebilirse, nihai saldırılarını serbest bırakır ve kazanırlar! Her muzaffer askeri onurlandırmalısınız.
kurallar
Her bir öğenin x ve y konum artı 1'in çarpımını içerdiği 25 x 25 tam sayı dizisi verildiğinde, aşağıdaki ölçütleri karşılayan her "muzaffer" tek öğenin koordinatlarını döndürün:
Elemanın değerinin ve bitişik tek elemanlarının (yukarı, aşağı, sola ve sağa) toplamı girişe (gizli güç numarası) bölünebilir. Dört tarafında da bitişik elemanlar olmalı ve kenarda olmamalıdır.
Başvurular, tek bir girdi gerektiren bir işlev veya tam program olabilir. Çıktı herhangi bir sırada olabilir.
25 x 25 dizimiz olan savaş alanı şöyle:
1, 1, 1, 1,...
1, 2, 3, 4,...
1, 3, 5, 7,...
1, 4, 7, 10,...
etc.
Misal
İşte 3 x 3 örneği:
43, 57, 71
46, 61, 76
49, 65, 81
Bir öğenin (merkezde 61) kazanıp kazanmadığını belirlemek için, onun ve bitişik tek elemanların değerlerini toplarız.
61 + 57 + 65 = 183
Toplam giriş tarafından bölünebiliyorsa, öğenin x ve y konumu yazdırılır. Girişimiz 3 ise, 183, 3'e bölünebilir olduğu için "1, 1" yazdırılır.
Çıktı
Girdi (gizli güç numarası) 37 ise, iade edilen elemanlar (övgüye değer askerler övülecek):
2, 18
3, 12
4, 9
5, 22
6, 6
8, 23
9, 4
10, 11
11, 10
12, 3
18, 2
22, 5
23, 8
Giriş 191 ise, döndürülen öğeler şöyle olmalıdır:
10, 19
19, 10
3 girişi:
1, 2
1, 4
1, 6
1, 8
1, 10
1, 12
1, 14
1, 16
1, 18
1, 20
1, 22
2, 1
2, 3
2, 4
2, 5
2, 7
2, 9
2, 10
2, 11
2, 13
2, 15
2, 16
2, 17
2, 19
2, 21
2, 22
2, 23
3, 2
3, 4
3, 6
3, 8
3, 10
3, 12
3, 14
3, 16
3, 18
3, 20
3, 22
4, 1
4, 2
4, 3
4, 5
4, 7
4, 8
4, 9
4, 11
4, 13
4, 14
4, 15
4, 17
4, 19
4, 20
4, 21
4, 23
5, 2
5, 4
5, 6
5, 8
5, 10
5, 12
5, 14
5, 16
5, 18
5, 20
5, 22
6, 1
6, 3
6, 5
6, 7
6, 9
6, 11
6, 13
6, 15
6, 17
6, 19
6, 21
6, 23
7, 2
7, 4
7, 6
7, 8
7, 10
7, 12
7, 14
7, 16
7, 18
7, 20
7, 22
8, 1
8, 3
8, 4
8, 5
8, 7
8, 9
8, 10
8, 11
8, 13
8, 15
8, 16
8, 17
8, 19
8, 21
8, 22
8, 23
9, 2
9, 4
9, 6
9, 8
9, 10
9, 12
9, 14
9, 16
9, 18
9, 20
9, 22
10, 1
10, 2
10, 3
10, 5
10, 7
10, 8
10, 9
10, 11
10, 13
10, 14
10, 15
10, 17
10, 19
10, 20
10, 21
10, 23
11, 2
11, 4
11, 6
11, 8
11, 10
11, 12
11, 14
11, 16
11, 18
11, 20
11, 22
12, 1
12, 3
12, 5
12, 7
12, 9
12, 11
12, 13
12, 15
12, 17
12, 19
12, 21
12, 23
13, 2
13, 4
13, 6
13, 8
13, 10
13, 12
13, 14
13, 16
13, 18
13, 20
13, 22
14, 1
14, 3
14, 4
14, 5
14, 7
14, 9
14, 10
14, 11
14, 13
14, 15
14, 16
14, 17
14, 19
14, 21
14, 22
14, 23
15, 2
15, 4
15, 6
15, 8
15, 10
15, 12
15, 14
15, 16
15, 18
15, 20
15, 22
16, 1
16, 2
16, 3
16, 5
16, 7
16, 8
16, 9
16, 11
16, 13
16, 14
16, 15
16, 17
16, 19
16, 20
16, 21
16, 23
17, 2
17, 4
17, 6
17, 8
17, 10
17, 12
17, 14
17, 16
17, 18
17, 20
17, 22
18, 1
18, 3
18, 5
18, 7
18, 9
18, 11
18, 13
18, 15
18, 17
18, 19
18, 21
18, 23
19, 2
19, 4
19, 6
19, 8
19, 10
19, 12
19, 14
19, 16
19, 18
19, 20
19, 22
20, 1
20, 3
20, 4
20, 5
20, 7
20, 9
20, 10
20, 11
20, 13
20, 15
20, 16
20, 17
20, 19
20, 21
20, 22
20, 23
21, 2
21, 4
21, 6
21, 8
21, 10
21, 12
21, 14
21, 16
21, 18
21, 20
21, 22
22, 1
22, 2
22, 3
22, 5
22, 7
22, 8
22, 9
22, 11
22, 13
22, 14
22, 15
22, 17
22, 19
22, 20
22, 21
22, 23
23, 2
23, 4
23, 6
23, 8
23, 10
23, 12
23, 14
23, 16
23, 18
23, 20
23, 22
5 girişi:
1, 4
1, 14
2, 2
2, 4
2, 6
2, 7
2, 8
2, 10
2, 12
2, 14
2, 16
2, 17
2, 18
2, 20
2, 22
3, 8
3, 18
4, 1
4, 2
4, 4
4, 6
4, 8
4, 10
4, 11
4, 12
4, 14
4, 16
4, 18
4, 20
4, 21
4, 22
6, 2
6, 4
6, 6
6, 8
6, 9
6, 10
6, 12
6, 14
6, 16
6, 18
6, 19
6, 20
6, 22
7, 2
7, 12
7, 22
8, 2
8, 3
8, 4
8, 6
8, 8
8, 10
8, 12
8, 13
8, 14
8, 16
8, 18
8, 20
8, 22
8, 23
9, 6
9, 16
10, 2
10, 4
10, 6
10, 8
10, 10
10, 12
10, 14
10, 16
10, 18
10, 20
10, 22
11, 4
11, 14
12, 2
12, 4
12, 6
12, 7
12, 8
12, 10
12, 12
12, 14
12, 16
12, 17
12, 18
12, 20
12, 22
13, 8
13, 18
14, 1
14, 2
14, 4
14, 6
14, 8
14, 10
14, 11
14, 12
14, 14
14, 16
14, 18
14, 20
14, 21
14, 22
16, 2
16, 4
16, 6
16, 8
16, 9
16, 10
16, 12
16, 14
16, 16
16, 18
16, 19
16, 20
16, 22
17, 2
17, 12
17, 22
18, 2
18, 3
18, 4
18, 6
18, 8
18, 10
18, 12
18, 13
18, 14
18, 16
18, 18
18, 20
18, 22
18, 23
19, 6
19, 16
20, 2
20, 4
20, 6
20, 8
20, 10
20, 12
20, 14
20, 16
20, 18
20, 20
20, 22
21, 4
21, 14
22, 2
22, 4
22, 6
22, 7
22, 8
22, 10
22, 12
22, 14
22, 16
22, 17
22, 18
22, 20
22, 22
23, 8
23, 18
Bu kod golf, standart boşlukları kullanmadan en düşük bayt sayımı kodu kazanır.
Bu benim ilk sunumum olduğu için, herhangi bir tavsiye büyük beğeni topluyor. Teşekkürler!