En hızlı Sudoku çözücü


21

Kazanan bulundu

Bir kazancımız var gibi görünüyor! Herkes dünyanın en hızlı Sudoku çözücüsüne itiraz etmeyi planlamazsa, 53x15 kullanıcısı şaşırtıcı derecede hızlı çözücü Tdoku ile kazanır. Hala çözücüler üzerinde çalışan herkes için, zamanım olduğunda yeni gönderimleri kıyaslayacağım.

Meydan okuma

Sudoku oyununun amacı, tahtayı her hücrede bir tane olan 1-9 sayılarıyla doldurmaktır, böylece her satır, sütun ve kutu her sayıyı yalnızca bir kez içerecek şekilde. Sudoku bulmacasının çok önemli bir yönü sadece geçerli bir çözüm olması gerektiğidir.

Bu zorluğun amacı basit, bir dizi Sudoku bulmacasını mümkün olduğunca hızlı çözmelisiniz. Ancak, sadece eski Sudoku'ları çözmeyeceksiniz, mevcut en zor Sudoku bulmacalarını, 17 ipucu Sudokus'u da çözeceksiniz. İşte bir örnek:

Sert Sudoku

kurallar

Dil

Herhangi bir dili kullanmakta özgürsünüz. Diliniz için yüklü bir derleyici yoksa, komut dosyanızın Linux'ta çalıştırılabileceği bir ortam yüklemek için gereken bir dizi komut satırı talimatı sağlayabilmeniz gerekir .

Kıyaslama makinesi

Kıyaslama bir Dell XPS 9560, 2.8GHz Intel Core i7-7700HQ (3.8GHz güçlendirme) 4 çekirdekli, 8 iş parçacığı, 16 GB RAM'de çalıştırılacak. GTX 1050 4 GB. Makine Ubuntu 19.04'ü çalıştırıyor. İşte unameçıktı, ilgilenen herkes için.

Linux 5.0.0-25-generic #26-Ubuntu SMP Thu Aug 1 12:04:58 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux

Giriş

Giriş bir dosya olarak verilecektir. Bu bulunabilir burada . Dosya 49151 Sudoku bulmaca içeriyor. Dosyanın ilk satırı bulmaca sayısıdır ve bundan sonraki her satır 81 karakter uzunluğundadır ve bir bulmacayı temsil eder. Bilinmeyen hücreler 0ve bilinen hücreler1-9 .

Programınızın dosya adını bağımsız değişken olarak alabilmesi veya dosya girdisini STDIN'den alabilmesi gerekirÇözümünüzün manuel kontrolünü kolaylaştırmak alabilmesi gerekir. Lütfen programınızın nasıl girdi girdiğine ilişkin bir talimat ekleyin.

Zamanlama / puanlama

Yorumlardaki tartışmalardan ve bazı yansımalardan, puanlama kriterleri tüm programınızın zamanı olacak şekilde değiştirildi. Programınız, resmi puanlama sırasında bile çıktı dosyasını doğru karma ile üretmelidir. Bu, mevcut herhangi bir çözümü etkilemez ve şu anki sıralamaları değiştirmez. Puanlama sistemi ile ilgili düşünceler takdir edilmektedir.

Eğer iki çözüm bireysel çalışmalarda benzer skorlara sahipse, birden fazla kıyaslama yapacağım ve ortalama süre nihai puan olacaktır. Ortalama puanlar% 2'den daha az farklılık gösteriyorsa, bunu bir beraberlik olarak kabul edeceğim.

Çözümünüzün çalışması bir saatten uzun sürerse, resmi olarak puanlanmaz. Bu durumlarda, üzerinde çalıştığı makineyi ve puanınızı raporlamaktan sorumlusunuz. Optimize edilmiş bir çözücü için bu bir sorun olmamalıdır.

DÜZENLE : Zor olsa da, eldeki sorunun en zor olmadığı dikkatimi çekti. Zaman varsa, burada sunulan çözümleri daha zor bulmaca setiyle karşılaştırmaya çalışacağım ve her bir gönderime puan ekleyeceğim. Ancak, bu resmi bir puanlama olmayacak ve sadece eğlence için.

Doğrulama

Çözümünüz bir MD5 / SHA256 sağlama toplamı ile doğrulanacaktır. Betiğiniz tüm bulmacaları ve çözümlerini içeren bir dosya oluşturabilmelidir. Bununla birlikte, dosya manuel olarak da incelenecektir, bu nedenle karma bir çarpışma almaya çalışmayın. Çıktı dosyanız aşağıdakilerle eşleşmelidir:

MD5: 41704fd7d8fd0723a45ffbb2dbbfa488
SHA256:0bc8dda364db7b99f389b42383e37b411d9fa022204d124cb3c8959eba252f05

Dosya şu biçimde olacaktır:

<num_puzzles>
<unsolved_puzzle#1>,<solved_puzzle#1>
<unsolved_puzzle#2>,<solved_puzzle#2>
...
<unsolved_puzzle#n>,<solved_puzzle#n>

tek bir satırsonu ile.

Neye izin verilmiyor

Hiçbir şekilde sabit kodlu çözümlere izin verilmez . Algoritmanız, kolay ve zor Sudokus gibi tüm Sudoku bulmacalarına uygulanmalıdır. Ancak, daha kolay bulmacalar için çözümünüzün yavaş olması tamamen iyidir.

Deterministik olmayan bir programa sahip olmanıza izin verilmez . Rastgele bir sayı üreteci kullanmanıza izin verilir, ancak jeneratörün tohumu sabitlenmelidir. Bu kural, ölçümlerin daha hassas ve daha az varyansa sahip olmasını sağlamaktır. (Peter Taylor'a bahşiş için teşekkürler)

Programınızın çalışma süresi boyunca harici kaynak veya web isteği kullanmanıza izin verilmez . Her şey kendine yeten olmalıdır. Bu, izin verilen yüklü kitaplıklar ve paketler için geçerli değildir.

Diğer bilgiler

Çözümünüzü kontrol etmek için başka bir test seti istiyorsanız, burada 10000 daha kolay Sudokus var . İşte onların çözümleri .

MD5: 3cb465ef6077c4fcab5bd6ae3bc50d62
SHA256:0bc8dda364db7b99f389b42383e37b411d9fa022204d124cb3c8959eba252f05

Herhangi bir sorunuz varsa, sormaktan çekinmeyin ve yanlış anlamaları netleştirmeye çalışacağım.


Bir APL + WIN çözücüm var ama makinenizde tercümanın bir kopyası yoksa beni saymanız gerekecek. Bilgi için zor örneğiniz 30ms ve ilk kolay örnek 16ms aldı.
Graham

@Graham tüm 49151 sudokus için 30ms veya ortalama 30ms mi aldı?
maxb

Ne yazık ki 30 ms sadece zor örnek içindir. Bu uğraşmaya değmezse, APL çözücüsünü sadece zor örneğinize ve kolay örneklerin ilkine karşı çalıştırdım. Zor örnekten tahmin edebilirsek, tam set için yaklaşık 1500 saniyeye bakıyoruz
Graham

1
Girişler de kodla mı çevrilmeli? Veya ... Eğlenmek için golf oynayabilirler mi? ;-)
Matt

2
Ben hiçbir şeyin balık oluyor doğrulayabilir sadece bu yüzden @TheMatt ı olmayan golfed tercih ediyorum
maxb

Yanıtlar:


5

C ++ - 0.201s resmi puanı

Kullanılması Tdoku ( kod ; tasarım ; kriterler ) bu sonuçları verir:

~ / tdoku $ lscpu | grep Model.name
Model adı: Intel (R) Core (TM) i7-4930K CPU @ 3.40GHz

~ / tdoku $ # build:
~ / tdoku $ CC = clang-8 CXX = clang ++ - 8 ./BUILD.sh
~ / tdoku $ clang -o çözmek örnek / solve.c yapı / libtdoku.a 

~ / tdoku $ # giriş biçimini ayarla:
~ / tdoku $ sed -e "s / 0 /./ g" all_17_clue_sudokus.txt> all_17_clue_sudokus.txt.in

~ / tdoku $ # çözmek:
~ / tdoku $ time ./solve 1 <all_17_clue_sudokus.txt.in> out.txt
gerçek 0m0.241s
kullanıcı 0m0.229s
sys 0m0.012s

~ / tdoku $ # çıktı biçimini ve sha256sum'u ayarlayın:
~ / tdoku $ grep -v "^: 0: $" out.txt | sed -e "s /: 1: /, /" | tr. 0 | sha256sum
0bc8dda364db7b99f389b42383e37b411d9fa022204d124cb3c8959eba252f05 -

Tdoku, sert Sudoku örnekleri için optimize edilmiştir. Ancak, sorun açıklamasının aksine, 17 ipucu bulmacasının en zor Sudoku'dan uzak olduğunu unutmayın. Aslında en kolayları arasında, çoğunluğu hiçbir geri takip gerektirmiyor. Gerçekten zor olan bulmacalar için Tdoku projesindeki diğer kıyaslama veri kümelerinden bazılarına bakın.

Ayrıca, Tdoku'nun zor bulmacalar için bildiğim en hızlı çözücü olmasına rağmen, 17 ipucu bulmacasının en hızlısı olmadığını unutmayın. Bunlar için en hızlısı, geliştirme sırasında 17 ipucu bulmaca için optimize edilmiş bir JCZSolve türevi olan bu pas projesi . Platforma bağlı olarak, bu bulmacalar için Tdoku'dan% 5-25 daha hızlı olabilir.


Wow, arkasındaki uygulama ve teori hakkında ilginç bir okuma. Bu zorluğa başlamadan önce, son teknoloji ürünü çözücüler ve veri kümeleri bulmak istedim. Sanırım yeterince sert görünmüyordum. Popüler "bilimsel" makalelerden, 17 ipucu bulmacası, şimdiye kadar konuşulan tek şeydi, bu yüzden bunların en zor olduğu varsayımdı. Makalenizde sunulan veri kümelerine karşı tüm gönderimleri gerçekleştirmeye çalışacağım ve gönderinizi bugün daha sonra değerlendireceğim. Fantastik iş!
maxb

Teşekkürler! Makaleden, en son teknoloji ürünü çözümü bulmanın beni uzun bir yolculuğa çıkardığını görüyorsunuz. :-) İnsanların neden 17 ipucu bulmacasına odaklandığını anlıyorum: veri seti iyi bilinen, iyi tanımlanmış, tam veya neredeyse çok, orta derecede büyük ve saf çözücüler için zor. Daha zor bulmacaları incelemek ilginç olsa da, sertliği resmileştirmek zor. örneğin, gerekli tekniklere dayanarak insanlar için öznel veya ampirik olarak zor mu kastediyoruz? permütasyonlar altında belirli bir çözücü için ortalama yavaş mı demek istiyoruz? Seçilen güvercin deliği çıkarımlarına sahip bir formül altında minimum arka kapı boyutu mu demek istiyoruz? vs
53x15

8

Node.js , 8.231s 6.735s resmi puanı

Dosya adını bağımsız değişken olarak alır. Giriş dosyası, meydan okumada açıklanan formattaki çözümleri zaten içerebilir, bu durumda program bunları kendi çözümleriyle karşılaştıracaktır.

Sonuçlar 'sudoku.log'a kaydedilir .

kod

'use strict';

const fs = require('fs');

const BLOCK     = [];
const BLOCK_NDX = [];
const N_BIT     = [];
const ZERO      = [];
const BIT       = [];

console.time('Processing time');

init();

let filename = process.argv[2],
    puzzle = fs.readFileSync(filename).toString().split('\n'),
    len = puzzle.shift(),
    output = len + '\n';

console.log("File '" + filename + "': " + len + " puzzles");

// solve all puzzles
puzzle.forEach((p, i) => {
  let sol, res;

  [ p, sol ] = p.split(',');

  if(p.length == 81) {
    if(!(++i % 2000)) {
      console.log((i * 100 / len).toFixed(1) + '%');
    }
    if(!(res = solve(p))) {
      throw "Failed on puzzle " + i;
    }
    if(sol && res != sol) {
      throw "Invalid solution for puzzle " + i;
    }
    output += p + ',' + res + '\n';
  }
});

// results
console.timeEnd('Processing time');
fs.writeFileSync('sudoku.log', output);
console.log("MD5 = " + require('crypto').createHash('md5').update(output).digest("hex"));

// initialization of lookup tables
function init() {
  let ptr, x, y;

  for(x = 0; x < 0x200; x++) {
    N_BIT[x] = [0, 1, 2, 3, 4, 5, 6, 7, 8].reduce((s, n) => s + (x >> n & 1), 0);
    ZERO[x] = ~x & -~x;
  }

  for(x = 0; x < 9; x++) {
    BIT[1 << x] = x;
  }

  for(ptr = y = 0; y < 9; y++) {
    for(x = 0; x < 9; x++, ptr++) {
      BLOCK[ptr] = (y / 3 | 0) * 3 + (x / 3 | 0);
      BLOCK_NDX[ptr] = (y % 3) * 3 + x % 3;
    }
  }
}

// solver
function solve(p) {
  let ptr, x, y, v,
      count = 81,
      m = Array(81).fill(-1),
      row = Array(9).fill(0),
      col = Array(9).fill(0),
      blk = Array(9).fill(0);

  // helper function to check and play a move
  function play(stack, x, y, n) {
    let p = y * 9 + x;

    if(~m[p]) {
      if(m[p] == n) {
        return true;
      }
      undo(stack);
      return false;
    }

    let msk, b;

    msk = 1 << n;
    b = BLOCK[p];

    if((col[x] | row[y] | blk[b]) & msk) {
      undo(stack);
      return false;
    }
    count--;
    col[x] ^= msk;
    row[y] ^= msk;
    blk[b] ^= msk;
    m[p] = n;
    stack.push(x << 8 | y << 4 | n);

    return true;
  }

  // helper function to undo all moves on the stack
  function undo(stack) {
    stack.forEach(v => {
      let x = v >> 8,
          y = v >> 4 & 15,
          p = y * 9 + x,
          b = BLOCK[p];

      v = 1 << (v & 15);

      count++;
      col[x] ^= v;
      row[y] ^= v;
      blk[b] ^= v;
      m[p] = -1;
    });
  }

  // convert the puzzle into our own format
  for(ptr = y = 0; y < 9; y++) {
    for(x = 0; x < 9; x++, ptr++) {
      if(~(v = p[ptr] - 1)) {
        col[x] |= 1 << v;
        row[y] |= 1 << v;
        blk[BLOCK[ptr]] |= 1 << v;
        count--;
        m[ptr] = v;
      }
    }
  }

  // main recursive search function
  let res = (function search() {
    // success?
    if(!count) {
      return true;
    }

    let ptr, x, y, v, n, max, best,
        k, i, stack = [],
        dCol = Array(81).fill(0),
        dRow = Array(81).fill(0),
        dBlk = Array(81).fill(0),
        b, v0;

    // scan the grid:
    // - keeping track of where each digit can go on a given column, row or block
    // - looking for a cell with the fewest number of legal moves
    for(max = ptr = y = 0; y < 9; y++) {
      for(x = 0; x < 9; x++, ptr++) {
        if(m[ptr] == -1) {
          v = col[x] | row[y] | blk[BLOCK[ptr]];
          n = N_BIT[v];

          // abort if there's no legal move on this cell
          if(n == 9) {
            return false;
          }

          // update dCol[], dRow[] and dBlk[]
          for(v0 = v ^ 0x1FF; v0;) {
            b = v0 & -v0;
            dCol[x * 9 + BIT[b]] |= 1 << y;
            dRow[y * 9 + BIT[b]] |= 1 << x;
            dBlk[BLOCK[ptr] * 9 + BIT[b]] |= 1 << BLOCK_NDX[ptr];
            v0 ^= b;
          }

          // update the cell with the fewest number of moves
          if(n > max) {
            best = {
              x  : x,
              y  : y,
              ptr: ptr,
              msk: v
            };
            max = n;
          }
        }
      }
    }

    // play all forced moves (unique candidates on a given column, row or block)
    // and make sure that it doesn't lead to any inconsistency
    for(k = 0; k < 9; k++) {
      for(n = 0; n < 9; n++) {
        if(N_BIT[dCol[k * 9 + n]] == 1) {
          i = BIT[dCol[k * 9 + n]];

          if(!play(stack, k, i, n)) {
            return false;
          }
        }

        if(N_BIT[dRow[k * 9 + n]] == 1) {
          i = BIT[dRow[k * 9 + n]];

          if(!play(stack, i, k, n)) {
            return false;
          }
        }

        if(N_BIT[dBlk[k * 9 + n]] == 1) {
          i = BIT[dBlk[k * 9 + n]];

          if(!play(stack, (k % 3) * 3 + i % 3, (k / 3 | 0) * 3 + (i / 3 | 0), n)) {
            return false;
          }
        }
      }
    }

    // if we've played at least one forced move, do a recursive call right away
    if(stack.length) {
      if(search()) {
        return true;
      }
      undo(stack);
      return false;
    }

    // otherwise, try all moves on the cell with the fewest number of moves
    while((v = ZERO[best.msk]) < 0x200) {
      col[best.x] ^= v;
      row[best.y] ^= v;
      blk[BLOCK[best.ptr]] ^= v;
      m[best.ptr] = BIT[v];
      count--;

      if(search()) {
        return true;
      }

      count++;
      m[best.ptr] = -1;
      col[best.x] ^= v;
      row[best.y] ^= v;
      blk[BLOCK[best.ptr]] ^= v;

      best.msk ^= v;
    }

    return false;
  })();

  return res ? m.map(n => n + 1).join('') : false;
}

// debugging
function dump(m) {
  let x, y, c = 81, s = '';

  for(y = 0; y < 9; y++) {
    for(x = 0; x < 9; x++) {
      s += (~m[y * 9 + x] ? (c--, m[y * 9 + x] + 1) : '-') + (x % 3 < 2 || x == 8 ? ' ' : ' | ');
    }
    s += y % 3 < 2 || y == 8 ? '\n' : '\n------+-------+------\n';
  }
  console.log(c);
  console.log(s);
}

Örnek çıktı

Intel Core i7 7500U @ 2,70 GHz'de test edilmiştir.

çıktı


Puanlamayı temizlemem gerekebilir. Paralel olarak herhangi bir şey yaparsanız, puanınız hala tüm bireysel çözme sürelerinin toplamıdır. Bu toplamı hesaplamalı ve puanınız olarak sunmalısınız. Bu şekilde, kodun mümkün olduğunca hızlı bir şekilde alınmasıyla ilgilidir. Kod her zaman 49151 bulmaca arasında paralel olabilir ve bu kısmı önemsiz hale getirir. Puanlamayı programın toplam süresi olarak değiştirebilir ve çoklu iş parçacığına izin vermeyebilirim. Ya da, belki de çoklu kullanım zorluğun bir parçası olmalı?
maxb

1
@maxb görüyorum. Endişenizin çoklu iş parçacığıyla ilgili olduğunu anlamadım.
Arnauld

1
Çözümünüz neden diğerlerinden daha hızlı?
Anush

2
@Anush Kodda 'zorla hamle' olarak adlandırdığım şey onu daha hızlı yapan ve gizli single olarak daha iyi bilinen şeydir . (Bu Düğüm en azından, gerçekten değer Ayrıca vb gizli ikizler, triple, dörtlü, bakmak olabilir ama emin değilim.)
Arnauld

3
" Ben çıplak single bakmaya başladı " cümleleri dikkatli :)
ngn

3

Python 3 ( dlx ile ) 4dk 46.870s resmi skoru

(burada tek çekirdekli i7-3610QM)

Açıkçası C gibi derlenmiş bir dil ile yenilebilir ve diş açmayı kullanır, ancak bu bir başlangıçtır ...

sudokugithub üzerine yerleştirdiğim (bu yazının altbilgisine kopyalanan) dlxbaşlık altında kullandığım bir modül .

#!/usr/bin/python
import argparse
import gc
import sys
from timeit import timeit

from sudoku import Solver

def getSolvers(filePath):
    solvers = []
    with open(filePath, 'r') as inFile:
        for line in inFile:
            content = line.rstrip()
            if len(content) == 81 and content.isdigit():
                solvers.append(Solver(content))
    return solvers

def solve(solvers):
    for solver in solvers:
        yield next(solver.genSolutions())

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Time or print solving of some sudoku.')
    parser.add_argument('filePath',
                        help='Path to the file containing proper sudoku on their own lines as 81 digits in row-major order with 0s as blanks')
    parser.add_argument('-p', '--print', dest='printEm', action='store_true',
                        default=False,
                        help='print solutions in the same fashion as the input')
    parser.add_argument('-P', '--pretty', dest='prettyPrintEm', action='store_true',
                        default=False,
                        help='print inputs and solutions formatted for human consumption')
    args = parser.parse_args()

    if args.printEm or args.prettyPrintEm:
        solvers = getSolvers(args.filePath)
        print(len(solvers))
        for solver, solution in zip(solvers, solve(solvers)):
            if args.prettyPrintEm:
                print(solver)
                print(solution)
            else:
                print('{},{}'.format(solver.representation(noneCharacter='0'), solution.representation()))
    else:
        setup = '''\
from __main__ import getSolvers, solve, args, gc
gc.disable()
solvers = getSolvers(args.filePath)'''
        print(timeit("for solution in solve(solvers): pass", setup=setup, number=1))

kullanım

  • Python 3'ü yükleyin
  • Yolunuzda bir sudoku.pyyere kaydedin (git hub bağlantısından veya aşağıdan kopyalayın)
  • Yukarıdaki kodu testSolver.pyyolunuzun herhangi bir yerinde kaydedin
  • Dlx yükleyin:
python -m pip install dlx
  • Çalıştır (bu, modası bitmiş gibi belleği tüketir)
kullanım: testSolver.py [-h] [-p] [-P] filePath

Bazı sudokuların zaman veya baskı çözümü.

konumsal argümanlar:
  filePath Kendi satırlarında uygun sudoku içeren dosyanın yolu
                satır boşluğunda 81 basamak, boşluk olarak 0s

isteğe bağlı argümanlar:
  -h, --help bu yardım mesajını göster ve çık
  -p, --baskı baskı çözümleri giriş ile aynı şekilde
  -P, - insan tüketimi için biçimlendirilmiş güzel baskı girişleri ve çözümleri

Gerekirse bir dosyaya meydan okuma özelliğinde gerektiği gibi boru çıkışı:

python testSolver.py -p girdi_dosya_yolu> çıktı_dosya_yolu

sudoku.py (evet burada çözmekten başka ekstra özellikler var)

import dlx
from itertools import permutations, takewhile
from random import choice, shuffle

'''
A 9 by 9 sudoku solver.
'''
_N = 3
_NSQ = _N**2
_NQU = _N**4
_VALID_VALUE_INTS = list(range(1, _NSQ + 1))
_VALID_VALUE_STRS = [str(v) for v in _VALID_VALUE_INTS]
_EMPTY_CELL_CHAR = '·'

# The following are mutually related by their ordering, and define ordering throughout the rest of the code. Here be dragons.
#
_CANDIDATES = [(r, c, v) for r in range(_NSQ) for c in range(_NSQ) for v in range(1, _NSQ + 1)]
_CONSTRAINT_INDEXES_FROM_CANDIDATE = lambda r, c, v: [ _NSQ * r + c, _NQU + _NSQ * r + v - 1, _NQU * 2 + _NSQ * c + v - 1, _NQU * 3 + _NSQ * (_N * (r // _N) + c // _N) + v - 1]
_CONSTRAINT_FORMATTERS =                             [ "R{0}C{1}"  , "R{0}#{1}"                , "C{0}#{1}"                   , "B{0}#{1}"]
_CONSTRAINT_NAMES = [(s.format(a, b + (e and 1)), dlx.DLX.PRIMARY) for e, s in enumerate(_CONSTRAINT_FORMATTERS) for a in range(_NSQ) for b in range(_NSQ)]
_EMPTY_GRID_CONSTRAINT_INDEXES = [_CONSTRAINT_INDEXES_FROM_CANDIDATE(r, c, v) for (r, c, v) in _CANDIDATES]
#
# The above are mutually related by their ordering, and define ordering throughout the rest of the code. Here be dragons.


class Solver:
    def __init__(self, representation=''):
        if not representation or len(representation) != _NQU:
            self._complete = False
            self._NClues = 0
            self._repr = [None]*_NQU # blank grid, no clues - maybe to extend to a generator by overriding the DLX column selection to be stochastic.
        else:
            nClues = 0
            repr = []
            for value in representation:
                if not value:
                    repr.append(None)
                elif isinstance(value, int) and 1 <= value <= _NSQ:
                    nClues += 1
                    repr.append(value)
                elif value in _VALID_VALUE_STRS:
                    nClues += 1
                    repr.append(int(value))
                else:
                    repr.append(None)
            self._complete = nClues == _NQU
            self._NClues = nClues
            self._repr = repr

    def genSolutions(self, genSudoku=True, genNone=False, dlxColumnSelctor=None):
        '''
        if genSudoku=False, generates each solution as a list of cell values (left-right, top-bottom)
        '''
        if self._complete:
            yield self
        else:
            self._initDlx()
            dlxColumnSelctor = dlxColumnSelctor or dlx.DLX.smallestColumnSelector
            if genSudoku:
                for solution in self._dlx.solve(dlxColumnSelctor):
                    yield Solver([v for (r, c, v) in sorted([self._dlx.N[i] for i in solution])])
            elif genNone:
                for solution in self._dlx.solve(dlxColumnSelctor):
                    yield
            else:
                for solution in self._dlx.solve(dlxColumnSelctor):
                    yield [v for (r, c, v) in sorted([self._dlx.N[i] for i in solution])]

    def uniqueness(self, returnSolutionIfProper=False):
        '''
        Returns: 0 if unsolvable;
                 1 (or the unique solution if returnSolutionIfProper=True) if uniquely solvable; or
                 2 if multiple possible solutions exist
        - a 'proper' sudoku is uniquely solvable.
        '''
        slns = list(takewhile(lambda t: t[0] < 2, ((i, sln) for i, sln in enumerate(self.genSolutions(genSudoku=returnSolutionIfProper, genNone=not returnSolutionIfProper)))))
        uniqueness = len(slns)
        if returnSolutionIfProper and uniqueness == 1:
            return slns[0][1]
        else:
            return uniqueness

    def representation(self, asString=True, noneCharacter='.'):
        if asString:
            return ''.join([v and str(_VALID_VALUE_STRS[v - 1]) or noneCharacter for v in self._repr])
        return self._repr[:]

    def __repr__(self):
        return display(self._repr)

    def _initDlx(self):
        self._dlx = dlx.DLX(_CONSTRAINT_NAMES)
        rowIndexes = self._dlx.appendRows(_EMPTY_GRID_CONSTRAINT_INDEXES, _CANDIDATES)
        for r in range(_NSQ):
            for c in range(_NSQ):
                v = self._repr[_NSQ * r + c]
                if v is not None:
                    self._dlx.useRow(rowIndexes[_NQU * r + _NSQ * c + v - 1])


_ROW_SEPARATOR_COMPACT = '+'.join(['-' * (2 * _N + 1) for b in range(_N)])[1:-1] + '\n'
_ROW_SEPARATOR = ' ·-' + _ROW_SEPARATOR_COMPACT[:-1] + '-·\n'
_TOP_AND_BOTTOM = _ROW_SEPARATOR.replace('+', '·')

_ROW_LABELS = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J']
_COL_LABELS = ['1', '2', '3', '4', '5', '6', '7', '8', '9']
_COLS_LABEL = ' ' + ' '.join([i % _N == 0 and '  ' + l or l for i, l in enumerate(_COL_LABELS)]) + '\n'


def display(representation, conversion=None, labelled=True):
    result = ''
    raw = [conversion[n or 0] for n in representation] if conversion else representation
    if labelled:
        result += _COLS_LABEL + _TOP_AND_BOTTOM
        rSep = _ROW_SEPARATOR
    else:
        rSep = _ROW_SEPARATOR_COMPACT
    for r in range(_NSQ):
        if r > 0 and r % _N == 0:
            result += rSep
        for c in range(_NSQ):
            if c % _N == 0:
                if c == 0:
                    if labelled:
                        result += _ROW_LABELS[r] + '| '
                else:
                    result += '| '
            result += str(raw[_NSQ * r + c] or _EMPTY_CELL_CHAR) + ' '
        if labelled:
            result += '|'
        result += '\n'
    if labelled:
        result += _TOP_AND_BOTTOM
    else:
        result = result[:-1]
    return result

def permute(representation):
    '''
    returns a random representation from the given representation's equivalence class
    '''
    rows = [list(representation[i:i+_NSQ]) for i in range(0, _NQU, _NSQ)]
    rows = permuteRowsAndBands(rows)
    rows = [[r[i] for r in rows] for i in range(_NSQ)]
    rows = permuteRowsAndBands(rows)
    pNumbers = [str(i) for i in range(1, _NSQ + 1)]
    shuffle(pNumbers)
    return ''.join(''.join([pNumbers[int(v) - 1] if v.isdigit() and v != '0' else v for v in r]) for r in rows)

def permuteRowsAndBands(rows):
    bandP = choice([x for x in permutations(range(_N))])
    rows = [rows[_N * b + r] for b in bandP for r in range(_N)]
    for band in range(0, _NSQ, _N):
        rowP = choice([x for x in permutations([band + i for i in range(_N)])])
        rows = [rows[rowP[i % _N]] if i // _N == band else rows[i] for i in range(_NSQ)]
    return rows


def getRandomSolvedStateRepresentation():
    return permute('126459783453786129789123456897231564231564897564897231312645978645978312978312645')


def getRandomSudoku():
    r = getRandomSolvedStateRepresentation()
    s = Solver(r)
    indices = list(range(len(r)))
    shuffle(indices)
    for i in indices:
        ns = Solver(s._repr[:i] + [None] + s._repr[i+1:])
        if ns.uniqueness() == 1:
            s = ns
    return s


if __name__ == '__main__':
    print('Some example useage:')
    inputRepresentation = '..3......4......2..8.12...6.........2...6...7...8.7.31.1.64.9..6.5..8...9.83...4.'
    print('>>> s = Solver({})'.format(inputRepresentation))
    s = Solver(inputRepresentation)
    print('>>> s')
    print(s)
    print('>>> print(s.representation())')
    print(s.representation())
    print('>>> print(display(s.representation(), labelled=False))')
    print(display(s.representation(), labelled=False))
    print('>>> for solution in s.genSolutions(): solution')
    for solution in s.genSolutions(): print(solution)
    inputRepresentation2 = inputRepresentation[:2] + '.' + inputRepresentation[3:]
    print('>>> s.uniqueness()')
    print(s.uniqueness())
    print('>>> s2 = Solver({})  # removed a clue; this has six solutions rather than one'.format(inputRepresentation2))
    s2 = Solver(inputRepresentation2)
    print('>>> s2.uniqueness()')
    print(s2.uniqueness())
    print('>>> for solution in s2.genSolutions(): solution')
    for solution in s2.genSolutions(): print(solution)
    print('>>> s3 = getRandomSudoku()')
    s3 = getRandomSudoku()
    print('>>> s3')
    print(s3)
    print('>>> for solution in s3.genSolutions(): solution')
    for solution in s3.genSolutions(): print(solution)

Bir Python çözümü için etkileyici, bugün daha sonra karşılaştırmaya çalışacağım.
maxb

1
Teşekkürler; ve vay be, orada çok daha hızlı maxb!
Jonathan Allan

1
Dans bağlantılarını kullanmak için +1
Anush

3

Python 3 + Z3 - 10dk 45.657s resmi puanı

dizüstü bilgisayarımda yaklaşık 1000'ler.

import time
start = time.time()

import z3.z3 as z3
import itertools
import datetime
import sys

solver = z3.Solver()
ceils = [[None] * 9 for i in range(9)]

for row in range(9):
    for col in range(9):
        name = 'c' + str(row * 9 + col)
        ceil = z3.BitVec(name, 9)
        solver.add(z3.Or(
            ceil == 0b000000001,
            ceil == 0b000000010,
            ceil == 0b000000100,
            ceil == 0b000001000,
            ceil == 0b000010000,
            ceil == 0b000100000,
            ceil == 0b001000000,
            ceil == 0b010000000,
            ceil == 0b100000000
        ))
        solver.add(ceil != 0)
        ceils[row][col] = ceil
for i in range(9):
    for j in range(9):
        for k in range(9):
            if j == k: continue
            solver.add(ceils[i][j] & ceils[i][k] == 0)
            solver.add(ceils[j][i] & ceils[k][i] == 0)
            row, col = i // 3 * 3, i % 3 * 3
            solver.add(ceils[row + j // 3][col + j % 3] & ceils[row + k // 3][col + k % 3] == 0)

row_col = list(itertools.product(range(9), range(9)))
lookup = { 1 << i: str(i + 1) for i in range(9) }

def solve(line):
    global solver, output, row_col, ceils, lookup
    solver.push()
    for value, (row, col) in zip(line, row_col):
        val = ord(value) - 48
        if val == 0: continue
        solver.add(ceils[row][col] == 1 << (val - 1))

    output = []
    if solver.check() == z3.sat:
        model = solver.model()
        for row in range(9):
            for col in range(9):
                val = model[ceils[row][col]].as_long()
                output.append(lookup[val])
    solver.pop()

    return ''.join(output)

count = int(input())
print(count)
for i in range(count):
    if i % 1000 == 0:
        sys.stderr.write(str(i) + '\n')
    line = input()
    print(line + "," + solve(line))
end = time.time()

sys.stderr.write(str(end - start))

Bağımlılığı yükle

pip install z3-çözücü

Çalıştırmak

python3 solve.py <in.txt> out.txt

Performansını nasıl artıracağından emin değilim, çünkü sihirli bir şekilde çözüldü ...


Genel bir kısıt çözücü için oldukça etkileyici. İlk uygulamam bundan çok daha yavaştı. Şu anda bir karşılaştırma ölçütü çalıştırarak, gönderimi tamamladıktan sonra güncelleyeceğim.
maxb

@maxb sadece bazı genel temizlik yaptı ve ben benchmark güncellemeye gerek yok ...
tsh

3

C - 2.228'ler 1.690s resmi puanı

dayanan Arnauld en @

#include<fcntl.h>
#define O const
#define R return
#define S static
#define  $(x,y...)if(x){y;}
#define  W(x,y...)while(x){y;}
#define fi(x,y...)for(I i=0,_n=(x);i<_n;i++){y;}
#define fj(x,y...)for(I j=0,_n=(x);j<_n;j++){y;}
#define fp81(x...)for(I p=0;p<81;p++){x;}
#define  fq3(x...)for(I q=0;q<3;q++){x;}
#define fij9(x...){fi(9,fj(9,x))}
#define m0(x)m0_((V*)(x),sizeof(x));
#define popc(x)__builtin_popcount(x)
#define ctz(x)__builtin_ctz(x)
#include<sys/syscall.h>
#define sc(f,x...)({L u;asm volatile("syscall":"=a"(u):"0"(SYS_##f)x:"cc","rcx","r11","memory");u;})
#define sc1(f,x)    sc(f,,"D"(x))
#define sc2(f,x,y)  sc(f,,"D"(x),"S"(y))
#define sc3(f,x,y,z)sc(f,,"D"(x),"S"(y),"d"(z))
#define wr(a...)sc3(write,a)
#define op(a...)sc3( open,a)
#define cl(a...)sc1(close,a)
#define fs(a...)sc2(fstat,a)
#define ex(a...)sc1( exit,a)
#define mm(x,y,z,t,u,v)({register L r10 asm("r10")=t,r8 asm("r8")=u,r9 asm("r9")=v;\
                         (V*)sc(mmap,,"D"(x),"S"(y),"d"(z),"r"(r10),"r"(r8),"r"(r9));})
typedef void V;typedef char C;typedef short H;typedef int I;typedef long long L;
S C BL[81],KL[81],IJK[81][3],m[81],t_[81-17],*t;S H rcb[3][9],cnt;
S V*mc(V*x,O V*y,L n){C*p=x;O C*q=y;fi(n,*p++=*q++)R x;}S V m0_(C*p,L n){fi(n,*p++=0);}
S I undo(C*t0){cnt+=t-t0;W(t>t0,C p=*--t;H v=1<<m[p];fq3(rcb[q][IJK[p][q]]^=v)m[p]=-1)R 0;}
S I play(C p,H v){$(m[p]>=0,R 1<<m[p]==v)I w=0;fq3(w|=rcb[q][IJK[p][q]])$(w&v,R 0)cnt--;
                  fq3(rcb[q][IJK[p][q]]^=v);m[p]=ctz(v);*t++=p;R 1;}
S I f(){$(!cnt,R 1)C*t0=t;H max=0,bp,bv,d[9][9][4];m0(d);
 fij9(I p=i*9+j;$(m[p]<0,
  I v=0;fq3(v|=rcb[q][IJK[p][q]])I w=v^511;$(!w,R 0)H g[]={1<<j,1<<i,1<<BL[p]};
  do{I z=ctz(w);w&=w-1;fq3(d[IJK[p][q]][z][q]|=g[q]);}while(w);
  I n=popc(v);$(max<n,max=n;bp=p;bv=v)))
 fij9(I u=d[i][j][0];$(popc(u)==1,I l=ctz(u);$(!play(   i*9+l ,1<<j),R undo(t0)))
        u=d[i][j][1];$(popc(u)==1,I l=ctz(u);$(!play(   l*9+i ,1<<j),R undo(t0)))
        u=d[i][j][2];$(popc(u)==1,I l=ctz(u);$(!play(KL[i*9+l],1<<j),R undo(t0))))
 $(t-t0,R f()||undo(t0))
 W(1,I v=1<<ctz(~bv);$(v>511,R 0)fq3(rcb[q][IJK[bp][q]]^=v)m[bp]=ctz(v);cnt--;$(f(),R 1)
     cnt++;m[bp]=-1;fq3(rcb[q][IJK[bp][q]]^=v)bv^=v)
 R 0;}
asm(".globl _start\n_start:pop %rdi\nmov %rsp,%rsi\njmp main");
V main(I ac,C**av){$(ac!=2,ex(2))
 fij9(I p=i*9+j;BL[p]=i%3*3+j%3;KL[p]=(i/3*3+j/3)*9+BL[p];IJK[p][0]=i;IJK[p][1]=j;IJK[p][2]=i/3*3+j/3)
 I d=op(av[1],0,0);struct stat h;fs(d,&h);C*s0=mm(0,h.st_size,1,0x8002,d,0),*s=s0;cl(d); //in
 C*r0=mm(0,2*h.st_size,3,0x22,-1,0),*r=r0; //out
 I n=0;W(*s!='\n',n*=10;n+=*s++-'0')s++;mc(r,s0,s-s0);r+=s-s0;
 fi(n,m0(rcb);cnt=81;t=t_;$(s[81]&&s[81]!='\n',ex(3))mc(r,s,81);r+=81;*r++=',';
      fp81(I v=m[p]=*s++-'1';$(v>=0,v=1<<v;fq3(rcb[q][IJK[p][q]]|=v)cnt--))
      s++;$(!f(),ex(4))fp81(r[p]=m[p]+'1')r+=81;*r++='\n')
 wr(1,r0,r-r0);ex(0);}

derleyin ve çalıştırın:

gcc -O3 -march=native -nostdlib -ffreestanding
time ./a.out all_17_clue_sudokus.txt | md5sum

Tebrikler, siz (ve Arnauld) şu anda çok önde gidiyorsunuz.
maxb

@maxb daha verimli i / o (libc olmadan doğrudan syscalls) kullanarak çalıştı ama etkisi umduğum kadar büyük değildi. Ayrıca kodun geri kalanı tidied. bu ~ 0.2s götürmelidir. Tekrar puan almayı düşünür müsün?
ngn

Tabii ki, bugün bir ara yapmayı deneyeceğim
maxb

Ayrıca, sadece bir fark yaratıp yaratmadığını görmek için tüm I / O için bir RAMdisk denemeyi düşünüyordum. Büyük bir fark yaratacağından şüpheliyim, çünkü okumalar ve yazmalar sıralı ve SSD'm her şeye uyacak kadar büyük bir önbelleğe sahip.
maxb

@maxb muhtemelen hiçbir fark olmayacak. programı ikinci çalıştırdığınızda, giriş dosyası zaten zaten linux'un dosya sistemi önbelleğinde olacaktır.
ngn

2

C - 12dk 28.374s resmi puanı

benim i5-7200U üzerinde yaklaşık 30m 15m çalışır ve doğru md5 karma üretir

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<sys/time.h>
#define B break
#define O const
#define P printf
#define R return
#define S static
#define $(x,y...)  if(x){y;}
#define E(x...)    else{x;}
#define W(x,y...)  while(x){y;}
#define fi(x,y...) for(I i=0,_n=(x);i<_n;i++){y;}
#define fj(x,y...) for(I j=0,_n=(x);j<_n;j++){y;}
typedef void V;typedef char C;typedef short H;typedef int I;typedef long long L;
S C h[81][20]; //h[i][0],h[i][1],..,h[i][19] are the squares that clash with square i
S H a[81]      //a[i]: bitmask of possible choices; initially one of 1<<0, 1<<1 .. 1<<8, or 511 (i.e. nine bits set)
   ,b[81];     //b[i]: negated bitmask of impossible chioces; once we know square i has value v, b[i] becomes ~(1<<v)
S I f(){ //f:recursive solver
 I p=-1; //keep track of the popcount (number of 1 bits) in a
 W(1,I q=0;                                         //simple non-recursive deductions:
     fi(81,fj(20,a[i]&=b[h[i][j]])                  // a[i] must not share bits with its clashing squares
           $(!(a[i]&a[i]-1),$(!a[i],R 0)b[i]=~a[i]) // if a[i] has one bit left, update b[i].  if a[i]=0, we have a contradiction
           q+=__builtin_popcount(a[i]))             // compute new popcount
     $(p==q,B)p=q;)                                 // if the popcount of a[] changed, try to do more deductions
 I k=-1,mc=10;fi(81,$(b[i]==-1,I c=__builtin_popcount(a[i]);$(c<mc,k=i;mc=c;$(c==2,B)))) //find square with fewest options left
 $(k==-1,R 1) //if there isn't any such, we're done - success! otherwise k is that square
 fi(9,$(a[k]&1<<i,H a0[81],b0[81];                                        //try different values for square k
                  memcpy(a0,a,81*sizeof(*a));memcpy(b0,b,81*sizeof(*b));  // save a and b
                  a[k]=1<<i;b[k]=~a[k];$(f(),R 1)                         // set square k and make a recursive call
                  memcpy(a,a0,81*sizeof(*a));memcpy(b,b0,81*sizeof(*b)))) // restore a and b
 R 0;}
S L tm(){struct timeval t;gettimeofday(&t,0);R t.tv_sec*1000000+t.tv_usec;} //current time in microseconds
I main(){L t=0;I n;scanf("%d",&n);P("%d\n",n);
 fi(81,L l=0;fj(81,$(i!=j&&(i%9==j%9||i/9==j/9||(i/27==j/27&&i%9/3==j%9/3)),h[i][l++]=j))) //precompute h
 fi(n,S C s[82];scanf("%s",s);printf("%s,",s);                        //i/o and loop over puzzles
      fj(81,a[j]=s[j]=='0'?511:1<<(s[j]-'1');b[j]=s[j]=='0'?-1:~a[j]) //represent '1' .. '9' as 1<<0 .. 1<<8, and 0 as 511
      t-=tm();I r=f();t+=tm();                                        //measure time only for the solving function
      $(!r,P("can't solve\n");exit(1))                                //shouldn't happen
      fj(81,s[j]=a[j]&a[j]-1?'0':'1'+__builtin_ctz(a[j]))             //1<<0 .. 1<<8 to '1' .. '9'
      P("%s\n",s))                                                    //output
 fflush(stdout);dprintf(2,"time:%lld microseconds\n",t);R 0;}         //print self-measured time to stderr so it doesn't affect stdout's md5

derleyin (tercihen clang v6 ile) ve çalıştırın:

clang -O3 -march=native a.c
time ./a.out <all_17_clue_sudokus.txt | tee o.txt | nl
md5sum o.txt

3
Neden bu kadar çirkin? Bu kod golfü değil!
Jonathan Allan

3
@JonathanAllan genellikle böyle kod (aksi takdirde yapmayı tercih eden bir takımda değilseniz). çok güzel :)
ngn

1
Haha, "güzel" ve 6 ay içinde geri dönmek kolaydır: p
Jonathan Allan

1
Evet gerçekten. Bunu birkaç yıldır yapıyorum ve daha verimli buluyorum. apl dünyasında incunabulum tarzı olarak bilinir . şişirilmiş kod ile gözlerinizi çoğunlukla dikey olarak hareket ettirirsiniz (doğal olmayan ve manzara monitörlerimiz için uygun değildir) ve çok kaydırırsınız. sıkı kod ile hepsini bir kerede görebilirsiniz, bu yüzden etrafta yolunuzu bulmak ve karmaşıklığını bir bakışta yargılamak daha kolaydır.
ngn

Bir geri izleme çözümü mü? memcpyOrada iki tane görüyorum ve bazı tekrarlamalar sürüyor. Bugün doğrulamaya çalışacağım.
maxb

2

Java - 4.056s resmi puanı

Bunun ana fikri, ihtiyaç duyulmadığında asla bellek ayırmamaktır. Tek istisna, derleyici tarafından yine de optimize edilmesi gereken ilkel öğelerdir. Diğer her şey, her adımda yapılan işlemlerin maskeleri ve dizileri olarak saklanır ve özyineleme adımı tamamlandığında geri alınabilir.

Tüm sudokusların yaklaşık yarısı geri izleme olmadan tamamen çözülür, ancak bu sayıyı daha yükseğe itersem toplam süre daha yavaş görünüyor. Ben C ++ bu yeniden yazma om planlamak ve daha da optimize, ama bu çözücü bir behemoth haline geliyor.

Mümkün olduğunca önbellek uygulamak istedim, bu da bazı sorunlara yol açtı. Örneğin, aynı satırda sadece 6 numaraya sahip olabilecek iki hücre varsa, imkansız bir duruma ulaştık ve geri izlemeye geri dönmeliyiz. Ancak tüm seçenekleri tek bir taramada hesapladığım ve daha sonra sayıları tek bir olasılıkla hücrelere yerleştirdiğim için, daha önce aynı satıra bir sayı yerleştirip yerleştirmediğimi iki kez kontrol etmedim. Bu imkansız çözümlere yol açar.

Üstte tanımlanan dizilerde her şey yer aldığında, gerçek çözücünün bellek kullanımı yaklaşık 216kB'dir. Bellek kullanımının ana kısmı, tüm bulmacaları içeren diziden ve Java'daki G / Ç işleyicilerinden gelir.

EDIT : Ben şimdi C ++ çevrilmiş bir sürümü var, ama çok daha hızlı değil. Resmi süre yaklaşık 3,5 saniyedir, bu büyük bir gelişme değildir. Uygulamamdaki asıl mesele, maskelerimi bitmasklerden ziyade diziler olarak tutmam. Bunu geliştirmek için neler yapılabileceğini görmek için Arnauld'un çözümünü analiz etmeye çalışacağım.

import java.util.HashMap;
import java.util.ArrayList;
import java.util.Arrays;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.File;
import java.io.PrintWriter;

public class Sudoku {   

    final private int[] unsolvedBoard;
    final private int[] solvedBoard; 
    final private int[][] neighbors;
    final private int[][] cells;

    private static int[] clues;
    final private int[][] mask;
    final private int[] formattedMask;
    final private int[][] placedMask;
    final private boolean[][][] lineMask;
    final private int[] lineCounters;
    final private int[][] sectionCounters;
    final private int[][] sectionMask;

    private int easySolved;
    private boolean isEasy;
    private int totEasy;
    private int placedNumbers;
    public long totTime = 0;
    private boolean solutionFound;
    public long lastPrint;
    private boolean shouldPrint;
    private boolean isImpossible = false;

    public Sudoku() {
        mask = new int[81][9];
        formattedMask = new int[81];
        placedMask = new int[64][64];
        lineMask = new boolean[64][81][9];
        sectionCounters = new int[9][27];
        sectionMask = new int[9][27];
        lineCounters = new int[64];
        neighbors = new int[81][20];
        unsolvedBoard = new int[81];
        solvedBoard = new int[81];
        cells = new int[][] {{0 ,1 ,2 ,9 ,10,11,18,19,20},
                             {3 ,4 ,5 ,12,13,14,21,22,23},
                             {6 ,7 ,8 ,15,16,17,24,25,26},
                             {27,28,29,36,37,38,45,46,47},
                             {30,31,32,39,40,41,48,49,50},
                             {33,34,35,42,43,44,51,52,53},
                             {54,55,56,63,64,65,72,73,74},
                             {57,58,59,66,67,68,75,76,77},
                             {60,61,62,69,70,71,78,79,80}};
    }

    final public long solveSudoku(int[] board, int clue) {

        long t1 = 0,t2 = 0;
        t1 = System.nanoTime();
        System.arraycopy(board, 0, unsolvedBoard, 0, 81);
        System.arraycopy(board, 0, solvedBoard, 0, 81);

        placedNumbers = 0;
        solutionFound = false;
        isEasy = true;
        isImpossible = false;

        for (int[] i : mask) {
            Arrays.fill(i, 0);
        }

        for (boolean[][] i : lineMask) {
            for (boolean[] j : i) {
                Arrays.fill(j, false);
            }
        }

        for (int i = 0; i < 81; i++) {
            if (solvedBoard[i] != -1) {
                put(i, solvedBoard[i]);
                placedNumbers++;
            }
        }

        solve(0, 0);
        t2 = System.nanoTime();
        easySolved += isEasy ? 1 : 0;

        if (solutionFound && placedNumbers == 81) {
            totTime += t2-t1;
            if (shouldPrint || t2-t1 > 5*1_000_000_000L) {
                System.out.print(String.format(
                    "Solution from %2d clues found in %7s", 
                    clue, 
                    printTime(t1, t2)
                ));
                shouldPrint = false;
                if (t2-t1 > 1*1000_000_000L) {
                    System.out.println();
                    display2(board, solvedBoard);
                }
            }
        } else {
            System.out.println("No solution");
            display2(unsolvedBoard, solvedBoard);
            return -1;
        }
        return t2 - t1;
    }

    final private void solve(int v, int vIndex) {

        lineCounters[vIndex] = 0;
        int easyIndex = placeEasy(vIndex);

        if (isImpossible) {
            resetEasy(vIndex, easyIndex);
            resetLineMask(vIndex);
            return;
        }

        if (placedNumbers == 81) {
            solutionFound = true;
            return;
        }
        // if (true) {
            // return;
        // }

        // either get the next empty cell
        // while (v < 81 && solvedBoard[v] >= 0) {
            // v++;
        // }
        // or get the cell with the fewest options
        generateFormattedMasks();
        int minOptions = 9;
        for (int i = 0; i < 81; i++) {
            int options = formattedMask[i] & 0xffff;
            if (options > 0 && options < minOptions) {
                minOptions = options;
                v = i;
            }
            if (options == 0 && solvedBoard[i] == -1) {
                isImpossible = true;
            }
        }
        if (!isImpossible) {
            for (int c = 0; c < 9; c++) {
                if (isPossible(v, c)) {
                    isEasy = false;
                    put(v, c);
                    placedNumbers++;
                    solve(v + 1, vIndex + 1); 
                    if (solutionFound) {
                        return;
                    }
                    unput(v, c);
                    placedNumbers--;
                }
            }
        }
        resetEasy(vIndex, easyIndex);
        resetLineMask(vIndex);
    }

    final private void resetEasy(int vIndex, int easyIndex) {
        for (int i = 0; i < easyIndex; i++) {
            int tempv2 = placedMask[vIndex][i];
            int c2 = solvedBoard[tempv2];
            unput(tempv2, c2);
            placedNumbers--;
        }
    }

    final private void resetLineMask(int vIndex) {
        if (lineCounters[vIndex] > 0) {
            for (int i = 0; i < 81; i++) {
                for (int c = 0; c < 9; c++) {
                    if (lineMask[vIndex][i][c]) {
                        enable(i, c);
                        lineMask[vIndex][i][c] = false;
                    }
                }
            }
        }       
        isImpossible = false;
    }

    final private int placeEasy(int vIndex) {
        int easyIndex = 0;
        int lastPlaced = 0, tempPlaced = 0, easyplaced = 0;
        int iter = 0;
        while (placedNumbers > lastPlaced+1) {
            lastPlaced = placedNumbers;
            tempPlaced = 0;
            while (placedNumbers > tempPlaced + 5) {
                tempPlaced = placedNumbers;
                easyIndex = placeNakedSingles(vIndex, easyIndex);
                if (isImpossible) {
                    return easyIndex;
                }
            }

            tempPlaced = 0;
            while (placedNumbers < 55*1 && placedNumbers > tempPlaced + 2) {
                tempPlaced = placedNumbers;
                easyIndex = placeHiddenSingles(vIndex, easyIndex);
                if (isImpossible) {
                    return easyIndex;
                }
            }

            tempPlaced = 0;
            while (placedNumbers < 65*1 && placedNumbers > tempPlaced + 1) {
                tempPlaced = placedNumbers;
                easyIndex = placeNakedSingles(vIndex, easyIndex);
                if (isImpossible) {
                    return easyIndex;
                }
            }

            if (iter < 2 && placedNumbers < 55*1) {
                checkNakedTriples(vIndex);
            }
            if (placedNumbers < 45*1) {
                checkNakedDoubles(vIndex);
                identifyLines(vIndex);
            }
            iter++;
        }
        return easyIndex;
    }

    final private int placeNakedSingles(int vIndex, int easyIndex) {
        generateFormattedMasks();
        for (int tempv = 0; tempv < 81; tempv++) {
            int possibilities = formattedMask[tempv];
            if ((possibilities & 0xffff) == 1) {
                possibilities >>= 16;
                int c = 0;
                while ((possibilities & 1) == 0) {
                    possibilities >>= 1;
                    c++;
                }
                if (isPossible(tempv, c)) {
                    put(tempv, c);
                    placedMask[vIndex][easyIndex++] = tempv;
                    placedNumbers++;
                } else {
                    isImpossible = true;
                    return easyIndex;
                }
            } else if (possibilities == 0 && solvedBoard[tempv] == -1) {
                isImpossible = true;
                return easyIndex;
            }
        }
        return easyIndex;
    }


    final private int placeHiddenSingles(int vIndex, int easyIndex) {
        for (int[] i : sectionCounters) {
            Arrays.fill(i, 0);
        }

        for (int c = 0; c < 9; c++) {
            for (int v = 0; v < 81; v++) {
                if (isPossible(v, c)) {
                    int cell = 3 * (v / 27) + ((v / 3) % 3);
                    sectionCounters[c][v / 9]++;
                    sectionCounters[c][9 + (v % 9)]++;
                    sectionCounters[c][18 + cell]++;
                    sectionMask[c][v / 9] = v;
                    sectionMask[c][9 + (v % 9)] = v;
                    sectionMask[c][18 + cell] = v;
                }
            }

            int v;

            for (int i = 0; i < 9; i++) {
                if (sectionCounters[c][i] == 1) {
                    v = sectionMask[c][i];
                    if (isPossible(v, c)) {
                        put(v, c);
                        placedMask[vIndex][easyIndex++] = v;
                        placedNumbers++;
                        int cell = 3 * (v / 27) + ((v / 3) % 3);
                        sectionCounters[c][9 + (v%9)] = 9;
                        sectionCounters[c][18 + cell] = 9;
                    } else {
                        isImpossible = true;
                        return easyIndex;
                    }
                }
            }

            for (int i = 9; i < 18; i++) {
                if (sectionCounters[c][i] == 1) {
                    v = sectionMask[c][i];
                    if (isPossible(v, c)) {
                        put(v, c);
                        placedMask[vIndex][easyIndex++] = v;
                        int cell = 3 * (v / 27) + ((v / 3) % 3);
                        placedNumbers++;
                        sectionCounters[c][18 + cell]++;
                    } else {
                        isImpossible = true;
                        return easyIndex;
                    }
                }
            }


            for (int i = 18; i < 27; i++) {
                if (sectionCounters[c][i] == 1) {
                    v = sectionMask[c][i];
                    if (isPossible(v, c)) {
                        put(v, c);
                        placedMask[vIndex][easyIndex++] = v;
                        placedNumbers++;
                    } else {
                        isImpossible = true;
                        return easyIndex;
                    }
                }
            }

        }
        return easyIndex;
    }

    final private int getFormattedMask(int v) {
        if (solvedBoard[v] >= 0) {
            return 0;
        }
        int x = 0;
        int y = 0;
        for (int c = 8; c >= 0; c--) {
            x <<= 1;
            x += mask[v][c] == 0 ? 1 : 0;
            y += mask[v][c] == 0 ? 1 : 0;
        }
        x <<= 16;
        return x + y;
    }

    final private int getCachedMask(int v) {
        return formattedMask[v];
    }

    final private void generateFormattedMasks() {
        for (int i = 0; i < 81; i++) {
            formattedMask[i] = getFormattedMask(i);
        }
    }

    final private void generateFormattedMasks(int[] idxs) {
        for (int i : idxs) {
            formattedMask[i] = getFormattedMask(i);
        }
    }


    final private void checkNakedDoubles(int vIndex) {
        generateFormattedMasks();
        for (int i = 0; i < 81; i++) {
            int bitmask = formattedMask[i];
            if ((bitmask & 0xffff) == 2) {
                for (int j = i+1; j < (i/9+1)*9; j++) {
                    int bitmask_j = formattedMask[j];
                    if (bitmask == bitmask_j) {
                        bitmask >>= 16;
                        int c0, c1, k = 0;
                        while ((bitmask & 1) == 0) {
                            k++;
                            bitmask >>= 1;
                        }
                        c0 = k;
                        bitmask >>= 1;
                        k++;
                        while ((bitmask & 1) == 0) {
                            k++;
                            bitmask >>= 1;
                        }
                        c1 = k;
                        for (int cell = (i/9)*9; cell < (i/9+1)*9; cell++) {
                            if (cell != i && cell != j) {
                                if (!lineMask[vIndex][cell][c0]) {
                                    disable(cell, c0);
                                    lineMask[vIndex][cell][c0] = true;
                                    lineCounters[vIndex]++;
                                }
                                if (!lineMask[vIndex][cell][c1]) {
                                    disable(cell, c1);
                                    lineMask[vIndex][cell][c1] = true;
                                    lineCounters[vIndex]++;
                                }
                            }
                        }
                    }
                }
            }
        }

        for (int idx = 0; idx < 81; idx++) {
            int i = (idx%9)*9 + idx/9;
            int bitmask = formattedMask[i];
            if ((bitmask & 0xffff) == 2) {
                for (int j = i+9; j < 81; j += 9) {
                    int bitmask_j = formattedMask[j];
                    if (bitmask == bitmask_j) {
                        bitmask >>= 16;
                        int c0, c1, k = 0;
                        while ((bitmask & 1) == 0) {
                            k++;
                            bitmask >>= 1;
                        }
                        c0 = k;
                        bitmask >>= 1;
                        k++;
                        while ((bitmask & 1) == 0) {
                            k++;
                            bitmask >>= 1;
                        }
                        c1 = k;
                        for (int cell = i % 9; cell < 81; cell += 9) {
                            if (cell != i && cell != j) {
                                if (!lineMask[vIndex][cell][c0]) {
                                    disable(cell, c0);
                                    lineMask[vIndex][cell][c0] = true;
                                    lineCounters[vIndex]++;
                                }
                                if (!lineMask[vIndex][cell][c1]) {
                                    disable(cell, c1);
                                    lineMask[vIndex][cell][c1] = true;
                                    lineCounters[vIndex]++;
                                }
                            }
                        }
                    }
                }
            }
        }

        for (int idx = 0; idx < 9; idx++) {
            for (int i = 0; i < 9; i++) {
                int bitmask = formattedMask[cells[idx][i]];
                if ((bitmask & 0xffff) == 2) {
                    for (int j = i+1; j < 9; j++) {
                        int bitmask_j = formattedMask[cells[idx][j]];
                        if (bitmask == bitmask_j) {
                            bitmask >>= 16;
                            int c0, c1, k = 0;
                            while ((bitmask & 1) == 0) {
                                k++;
                                bitmask >>= 1;
                            }
                            c0 = k;
                            bitmask >>= 1;
                            k++;
                            while ((bitmask & 1) == 0) {
                                k++;
                                bitmask >>= 1;
                            }
                            c1 = k;
                            for (int cellIdx = 0; cellIdx < 9; cellIdx++) {
                                if (cellIdx != i && cellIdx != j) {
                                    int cell = cells[idx][cellIdx];
                                    if (!lineMask[vIndex][cell][c0]) {
                                        disable(cell, c0);
                                        lineMask[vIndex][cell][c0] = true;
                                        lineCounters[vIndex]++;
                                    }
                                    if (!lineMask[vIndex][cell][c1]) {
                                        disable(cell, c1);
                                        lineMask[vIndex][cell][c1] = true;
                                        lineCounters[vIndex]++;
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }
    }

    final private void checkNakedTriples(int vIndex) {

        generateFormattedMasks();

        for (int i = 0; i < 81; i++) {
            int bitmask = formattedMask[i];
            if ((bitmask & 0xffff) == 3) {
                for (int j = i+1; j < (i/9+1)*9; j++) {
                    int bitmask_j = formattedMask[j];
                    if (bitmask_j > 0 && bitmask == (bitmask | bitmask_j)) {
                        for (int k = j+1; k < (i/9+1)*9; k++) {
                            int bitmask_k = formattedMask[k];
                            if (bitmask_k > 0 && bitmask == (bitmask | bitmask_k)) {

                                int bitmask_shifted = bitmask >> 16;
                                int c0, c1, c2, l = 0;
                                while ((bitmask_shifted & 1) == 0) {
                                    l++;
                                    bitmask_shifted >>= 1;
                                }
                                c0 = l;
                                bitmask_shifted >>= 1;
                                l++;
                                while ((bitmask_shifted & 1) == 0) {
                                    l++;
                                    bitmask_shifted >>= 1;
                                }
                                c1 = l;
                                bitmask_shifted >>= 1;
                                l++;
                                while ((bitmask_shifted & 1) == 0) {
                                    l++;
                                    bitmask_shifted >>= 1;
                                }
                                c2 = l;
                                for (int cell = (i/9)*9; cell < (i/9+1)*9; cell++) {
                                    if (cell != i && cell != j && cell != k) {
                                        if (!lineMask[vIndex][cell][c0]) {
                                            disable(cell, c0);
                                            lineMask[vIndex][cell][c0] = true;
                                            lineCounters[vIndex]++;
                                        }
                                        if (!lineMask[vIndex][cell][c1]) {
                                            disable(cell, c1);
                                            lineMask[vIndex][cell][c1] = true;
                                            lineCounters[vIndex]++;
                                        }
                                        if (!lineMask[vIndex][cell][c2]) {
                                            disable(cell, c2);
                                            lineMask[vIndex][cell][c2] = true;
                                            lineCounters[vIndex]++;
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }

        for (int idx = 0; idx < 81; idx++) {
            int i = (idx%9)*9 + idx/9;
            int bitmask = formattedMask[i];
            if ((bitmask & 0xffff) == 3) {
                for (int j = i+9; j < 81; j += 9) {
                    int bitmask_j = formattedMask[j];
                    if (bitmask_j > 0 && bitmask == (bitmask | bitmask_j)) {
                        for (int k = j+9; k < 81; k += 9) {
                            int bitmask_k = formattedMask[k];
                            if (bitmask_k > 0 && bitmask == (bitmask | bitmask_k)) {

                                int bitmask_shifted = bitmask >> 16;
                                int c0, c1, c2, l = 0;
                                while ((bitmask_shifted & 1) == 0) {
                                    l++;
                                    bitmask_shifted >>= 1;
                                }
                                c0 = l;
                                bitmask_shifted >>= 1;
                                l++;
                                while ((bitmask_shifted & 1) == 0) {
                                    l++;
                                    bitmask_shifted >>= 1;
                                }
                                c1 = l;
                                bitmask_shifted >>= 1;
                                l++;
                                while ((bitmask_shifted & 1) == 0) {
                                    l++;
                                    bitmask_shifted >>= 1;
                                }
                                c2 = l;
                                for (int cell = i%9; cell < 81; cell += 9) {
                                    if (cell != i && cell != j && cell != k) {
                                        if (!lineMask[vIndex][cell][c0]) {
                                            disable(cell, c0);
                                            lineMask[vIndex][cell][c0] = true;
                                            lineCounters[vIndex]++;
                                        }
                                        if (!lineMask[vIndex][cell][c1]) {
                                            disable(cell, c1);
                                            lineMask[vIndex][cell][c1] = true;
                                            lineCounters[vIndex]++;
                                        }
                                        if (!lineMask[vIndex][cell][c2]) {
                                            disable(cell, c2);
                                            lineMask[vIndex][cell][c2] = true;
                                            lineCounters[vIndex]++;
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }

        for (int idx = 0; idx < 9; idx++) {
            for (int i = 0; i < 9; i++) {
                int bitmask = formattedMask[cells[idx][i]];
                if ((bitmask & 0xffff) == 3) {
                    for (int j = i+1; j < 9; j++) {
                        int bitmask_j = formattedMask[cells[idx][j]];
                        if (bitmask_j > 0 && bitmask == (bitmask | bitmask_j)) {
                            for (int k = j+1; k < 9; k++) {
                                int bitmask_k = formattedMask[cells[idx][k]];
                                if (bitmask_k > 0 && bitmask == (bitmask | bitmask_k)) {

                                    int bitmask_shifted = bitmask >> 16;
                                    int c0, c1, c2, l = 0;
                                    while ((bitmask_shifted & 1) == 0) {
                                        l++;
                                        bitmask_shifted >>= 1;
                                    }
                                    c0 = l;
                                    bitmask_shifted >>= 1;
                                    l++;
                                    while ((bitmask_shifted & 1) == 0) {
                                        l++;
                                        bitmask_shifted >>= 1;
                                    }
                                    c1 = l;
                                    bitmask_shifted >>= 1;
                                    l++;
                                    while ((bitmask_shifted & 1) == 0) {
                                        l++;
                                        bitmask_shifted >>= 1;
                                    }
                                    c2 = l;
                                    for (int cellIdx = 0; cellIdx < 9; cellIdx++) {
                                        if (cellIdx != i && cellIdx != j && cellIdx != k) {
                                            int cell = cells[idx][cellIdx];
                                            if (!lineMask[vIndex][cell][c0]) {
                                                disable(cell, c0);
                                                lineMask[vIndex][cell][c0] = true;
                                                lineCounters[vIndex]++;
                                            }
                                            if (!lineMask[vIndex][cell][c1]) {
                                                disable(cell, c1);
                                                lineMask[vIndex][cell][c1] = true;
                                                lineCounters[vIndex]++;
                                            }
                                            if (!lineMask[vIndex][cell][c2]) {
                                                disable(cell, c2);
                                                lineMask[vIndex][cell][c2] = true;
                                                lineCounters[vIndex]++;
                                            }
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }

    }

    final private void identifyLines(int vIndex) {

        int disabledLines = 0;
        int[][] tempRowMask = new int[3][9];
        int[][] tempColMask = new int[3][9];
        for (int i = 0; i < 9; i++) {
            for (int c = 0; c < 9; c++) {
                for (int j = 0; j < 3; j++) {
                    tempRowMask[j][c] = 0;
                    tempColMask[j][c] = 0;
                }
                for (int j = 0; j < 9; j++) {
                    if (mask[cells[i][j]][c] == 0) {
                        tempRowMask[j/3][c]++;
                        tempColMask[j%3][c]++;
                    }
                }

                int rowCount = 0;
                int colCount = 0;
                int rowIdx = -1, colIdx = -1;
                for (int j = 0; j < 3; j++) {
                    if (tempRowMask[j][c] > 0) {
                        rowCount++;
                        rowIdx = j;
                    }
                    if (tempColMask[j][c] > 0) {
                        colCount++;
                        colIdx = j;
                    }
                }
                if (rowCount == 1) {
                    for (int j = (i/3)*3; j < (i/3 + 1)*3; j++) {
                        if (j != i) {
                            for (int k = rowIdx*3; k < (rowIdx+1)*3; k++) {
                                int cell = cells[j][k];
                                if (!lineMask[vIndex][cell][c]) {
                                    disable(cell, c);
                                    lineMask[vIndex][cell][c] = true;
                                    lineCounters[vIndex]++;
                                }
                            }
                        }
                    }

                }
                if (colCount == 1) {
                    for (int j = i % 3; j < 9; j += 3) {
                        if (j != i) {
                            for (int k = colIdx; k < 9; k += 3) {
                                int cell = cells[j][k];
                                if (!lineMask[vIndex][cell][c]) {
                                    disable(cell, c);
                                    lineMask[vIndex][cell][c] = true;
                                    lineCounters[vIndex]++;
                                }
                            }
                        }
                    }
                }
            }
        }
    }

    final private boolean isPossible(int v, int c) {
        return mask[v][c] == 0;
    }

    final private int checkMask(int[][] neighbors, int v, int c) {
        int tempValue = 0;
        for (int n : neighbors[v]) {
            if (mask[n][c] > 0) {
                tempValue++;
            }
        }
        return tempValue;
    }

    final private void put(int v, int c) {
        solvedBoard[v] = c;
        for (int i : neighbors[v]) {
            mask[i][c]++;
        }
        for (int i = 0; i < 9; i++) {
            mask[v][i]++;
        }
    }

    final private void disable(int v, int c) {
        mask[v][c]++;
    }

    final private void unput(int v, int c) {
        solvedBoard[v] = -1;
        for (int i : neighbors[v]) {
            mask[i][c]--;
        }
        for (int i = 0; i < 9; i++) {
            mask[v][i]--;
        }       
    }

    final private void enable(int v, int c) {
        // enables++;
        mask[v][c]--;
    }

    public String getString(int[] board) {
        StringBuilder s = new StringBuilder();
        for (int i : board) {
            s.append(i+1);
        }
        return s.toString();
    }

    public long getTime() {
        return totTime;
    }

    public static String printTime(long t1, long t2) {
        String unit = " ns";
        if (t2-t1 > 10000) {
            unit = " us";
            t1 /= 1000; t2 /= 1000;
        }
        if (t2-t1 > 10000) {
            unit = " ms";
            t1 /= 1000; t2 /= 1000;
        }
        if (t2-t1 > 10000) {
            unit = " seconds";
            t1 /= 1000; t2 /= 1000;
        }
        return (t2-t1) + unit;
    }

    public void display(int[] board) {

        for (int i = 0; i < 9; i++) {
            if (i % 3 == 0) {
                System.out.println("+-----+-----+-----+");
            }
            for (int j = 0; j < 9; j++) {
                if (j % 3 == 0) {
                    System.out.print("|");
                } else {
                    System.out.print(" ");
                }
                if (board[i*9+j] != -1) {
                    System.out.print(board[i*9+j]+1);
                } else {
                    System.out.print(" ");
                }
            }
            System.out.println("|");
        }
        System.out.println("+-----+-----+-----+");
    }

    public void display2(int[] board, int[] solved) {

        for (int i = 0; i < 9; i++) {
            if (i % 3 == 0) {
                System.out.println("+-----+-----+-----+  +-----+-----+-----+");
            }
            for (int j = 0; j < 9; j++) {
                if (j % 3 == 0) {
                    System.out.print("|");
                } else {
                    System.out.print(" ");
                }
                if (board[i*9+j] != -1) {
                    System.out.print(board[i*9+j]+1);
                } else {
                    System.out.print(" ");
                }
            }

            System.out.print("|  ");

            for (int j = 0; j < 9; j++) {
                if (j % 3 == 0) {
                    System.out.print("|");
                } else {
                    System.out.print(" ");
                }
                if (solved[i*9+j] != -1) {
                    System.out.print(solved[i*9+j]+1);
                } else {
                    System.out.print(" ");
                }
            }

            System.out.println("|");
        }
        System.out.println("+-----+-----+-----+  +-----+-----+-----+");
    }

    private boolean contains(int[] a, int v) {
        for (int i : a) {
            if (i == v) {
                return true;
            }
        }
        return false;
    }

    public void connect() {
        for (int i = 0; i < 81; i++) {
            for (int j = 0; j < 20; j++) {
                neighbors[i][j] = -1;
            }
        }
        int[] n_count = new int[81];

        HashMap<Integer,ArrayList<Integer>> map 
            = new HashMap<Integer,ArrayList<Integer>>();

        for (int[] c: cells) {
            ArrayList<Integer> temp = new ArrayList<Integer>();
            for (int v : c) {
                temp.add(v);
            }
            for (int v : c) {
                map.put(v,temp);
            }
        }

        for (int i = 0; i < 81; i++) {
            for (int j = (i/9)*9; j < (i/9)*9 + 9; j++) {
                if (i != j) {
                    neighbors[i][n_count[i]++] = j;
                }
            }
            for (int j = i%9; j < 81; j += 9) {
                if (i != j) {
                    neighbors[i][n_count[i]++] = j;
                }
            }
            for (int j : map.get(i)) {
                if (i != j) {
                    if (!contains(neighbors[i], j)) {
                        neighbors[i][n_count[i]++] = j;
                    }
                }
            }
        }
    }

    public static int[][] getInput(String filename) {
        int[][] boards;
        try (BufferedInputStream in = new BufferedInputStream(
            new FileInputStream(filename))) {

            BufferedReader r = new BufferedReader(
                new InputStreamReader(in, StandardCharsets.UTF_8));
            int n = Integer.valueOf(r.readLine());
            boards = new int[n][81];
            clues = new int[n];
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < 81; j++) {
                    int x = r.read();
                    boards[i][j] = x - 49;
                    clues[i] += x > 48 ? 1 : 0;
                }
                r.read();
            }
            r.close();
        } catch (IOException ex) {
            throw new RuntimeException(ex);
        }
        return boards;
    }

    private int getTotEasy() {
        return totEasy;
    }

    public String getSolution() {
        StringBuilder s = new StringBuilder(256);
        for (int i : unsolvedBoard) {
            s.append(i+1);
        }
        s.append(",");
        for (int i : solvedBoard) {
            s.append(i+1);
        }
        return s.toString();
    }

    public static void main (String[] args) {
        long t0 = System.nanoTime();
        Sudoku gc = new Sudoku();
        File f;
        PrintWriter p;
        try {
            f = new File("sudoku_output.txt");
            p = new PrintWriter(f);
        } catch (Exception e) {
            return;
        }
        if (args.length != 1) {
            System.out.println("Usage: java Sudoku <input_file>");
            return;
        }
        int[][] boards = gc.getInput(args[0]);
        long tinp = System.nanoTime();
        gc.connect();
        long t1 = System.nanoTime();
        p.println(boards.length);

        long maxSolveTime = 0;
        int maxSolveIndex = 0;
        long[] solveTimes = new long[boards.length];
        for (int i = 0; i < boards.length; i++) {
            long tempTime = System.nanoTime();
            if (tempTime - gc.lastPrint > 200_000_000 
                || i == boards.length - 1) {

                gc.shouldPrint = true;
                gc.lastPrint = tempTime;
                System.out.print(String.format(
                    "\r(%7d/%7d) ", i+1, boards.length));
            }
            long elapsed = gc.solveSudoku(boards[i], gc.clues[i]);
            if (elapsed == -1) {
                System.out.println("Impossible: " + i);
            }
            if (elapsed > maxSolveTime) {
                maxSolveTime = elapsed;
                maxSolveIndex = i;
            }
            solveTimes[i] = elapsed;
            p.println(gc.getSolution());
            // break;
        }

        p.close();
        long t2 = System.nanoTime();
        Arrays.sort(solveTimes);
        System.out.println();
        System.out.println("Median solve time: " 
            + gc.printTime(0, solveTimes[boards.length/2]));
        System.out.println("Longest solve time: " 
            + gc.printTime(0, maxSolveTime) + " for board " + maxSolveIndex);
        gc.display(boards[maxSolveIndex]);
        System.out.println();

        System.out.println("Total time (including prints): " 
            + gc.printTime(t0,t2));
        System.out.println("Sudoku solving time: " 
            + gc.printTime(0,gc.getTime()));
        System.out.println("Average time per board: " 
            + gc.printTime(0,gc.getTime()/boards.length));
        System.out.println("Number of one-choice digits per board: " 
            + String.format("%.2f", gc.getTotEasy()/(double)boards.length));  
        System.out.println("Easily solvable boards: " + gc.easySolved);
        System.out.println("\nInput time: " + gc.printTime(t0,tinp));
        System.out.println("Connect time: " + gc.printTime(tinp,t1));
        try {
            Thread.sleep(10000);
        } catch (InterruptedException e) {

        }
    }
}

Pürüzlü dizileri 2D dizilere çevirirken biraz zaman kazanmalısın.
CSharpie

2

Minisat ile C ++ (2.2.1-5) - 11.735s resmi skor

Bu, özel bir algoritma kadar hızlı değildir, ancak farklı bir yaklaşım, ilginç bir referans noktası ve anlaşılması kolaydır.

$ clang ++ -o çözmek -lminisat solver_minisat.cc

#include <minisat/core/Solver.h>

namespace {

using Minisat::Lit;
using Minisat::mkLit;
using namespace std;

struct SolverMiniSat {
    Minisat::Solver solver;

    SolverMiniSat() {
        InitializeVariables();
        InitializeTriadDefinitions();
        InitializeTriadOnnes();
        InitializeCellOnnes();
    }

    // normal cell literals, of which we have 9*9*9
    static Lit Literal(int row, int column, int value) {
        return mkLit(value + 9 * (column + 9 * row), true);
    }

    // horizontal triad literals, of which we have 9*3*9, starting after the cell literals
    static Lit HTriadLiteral(int row, int column, int value) {
        int base = 81 * 9;
        return mkLit(base + value + 9 * (column + 3 * row));
    }

    // vertical triad literals, of which we have 3*9*9, starting after the h_triad literals
    static Lit VTriadLiteral(int row, int column, int value) {
        int base = (81 + 27) * 9;
        return mkLit(base + value + 9 * (row + 3 * column));
    }

    void InitializeVariables() {
        for (int i = 0; i < 15 * 9 * 9; i++) {
            solver.newVar();
        }
    }

    // create an exactly-one constraint over a set of literals
    void CreateOnne(const Minisat::vec<Minisat::Lit> &literals) {
        solver.addClause(literals);
        for (int i = 0; i < literals.size() - 1; i++) {
            for (int j = i + 1; j < literals.size(); j++) {
                solver.addClause(~literals[i], ~literals[j]);
            }
        }
    }

    void InitializeTriadDefinitions() {
        for (int i = 0; i < 9; i++) {
            for (int j = 0; j < 3; j++) {
                for (int value = 0; value < 9; value++) {
                    Lit h_triad = HTriadLiteral(i, j, value);
                    Lit v_triad = VTriadLiteral(j, i, value);
                    int j0 = j * 3 + 0, j1 = j * 3 + 1, j2 = j * 3 + 2;

                    Minisat::vec<Minisat::Lit> h_triad_def;
                    h_triad_def.push(Literal(i, j0, value));
                    h_triad_def.push(Literal(i, j1, value));
                    h_triad_def.push(Literal(i, j2, value));
                    h_triad_def.push(~h_triad);
                    CreateOnne(h_triad_def);

                    Minisat::vec<Minisat::Lit> v_triad_def;
                    v_triad_def.push(Literal(j0, i, value));
                    v_triad_def.push(Literal(j1, i, value));
                    v_triad_def.push(Literal(j2, i, value));
                    v_triad_def.push(~v_triad);
                    CreateOnne(v_triad_def);
                }
            }
        }
    }

    void InitializeTriadOnnes() {
        for (int i = 0; i < 9; i++) {
            for (int value = 0; value < 9; value++) {
                Minisat::vec<Minisat::Lit> row;
                row.push(HTriadLiteral(i, 0, value));
                row.push(HTriadLiteral(i, 1, value));
                row.push(HTriadLiteral(i, 2, value));
                CreateOnne(row);

                Minisat::vec<Minisat::Lit> column;
                column.push(VTriadLiteral(0, i, value));
                column.push(VTriadLiteral(1, i, value));
                column.push(VTriadLiteral(2, i, value));
                CreateOnne(column);

                Minisat::vec<Minisat::Lit> hbox;
                hbox.push(HTriadLiteral(3 * (i / 3) + 0, i % 3, value));
                hbox.push(HTriadLiteral(3 * (i / 3) + 1, i % 3, value));
                hbox.push(HTriadLiteral(3 * (i / 3) + 2, i % 3, value));
                CreateOnne(hbox);

                Minisat::vec<Minisat::Lit> vbox;
                vbox.push(VTriadLiteral(i % 3, 3 * (i / 3) + 0, value));
                vbox.push(VTriadLiteral(i % 3, 3 * (i / 3) + 1, value));
                vbox.push(VTriadLiteral(i % 3, 3 * (i / 3) + 2, value));
                CreateOnne(vbox);
            }
        }
    }

    void InitializeCellOnnes() {
        for (int row = 0; row < 9; row++) {
            for (int column = 0; column < 9; column++) {
                Minisat::vec<Minisat::Lit> literals;
                for (int value = 0; value < 9; value++) {
                    literals.push(Literal(row, column, value));
                }
                CreateOnne(literals);
            }
        }
    }

    bool SolveSudoku(const char *input, char *solution, size_t *num_guesses) {
        Minisat::vec<Minisat::Lit> assumptions;
        for (int row = 0; row < 9; row++) {
            for (int column = 0; column < 9; column++) {
                char digit = input[row * 9 + column];
                if (digit != '.') {
                    assumptions.push(Literal(row, column, digit - '1'));
                }
            }
        }
        solver.decisions = 0;
        bool satisfied = solver.solve(assumptions);
        if (satisfied) {
            for (int row = 0; row < 9; row++) {
                for (int column = 0; column < 9; column++) {
                    for (int value = 0; value < 9; value++) {
                        if (solver.model[value + 9 * (column + 9 * row)] ==
                            Minisat::lbool((uint8_t) 1)) {
                            solution[row * 9 + column] = value + '1';
                        }
                    }
                }
            }
        }
        *num_guesses = solver.decisions - 1;
        return satisfied;
    }
};

} //end anonymous namespace

int main(int argc, const char **argv) {
    char *puzzle = NULL;
    char solution[81];
    size_t size, guesses;

    SolverMiniSat solver;

    while (getline(&puzzle, &size, stdin) != -1) {
        int count = solver.SolveSudoku(puzzle, solution, &guesses);
        printf("%.81s:%d:%.81s\n", puzzle, count, solution);
    }
}
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.