4Å1λ£₁λ¨Â¦¦s¦¦*O+
Mevcut 05AB1E cevabından kısa değil , ancak yeni 05AB1E versiyonunun özyinelemeli işlevselliğini kendim için pratik olarak denemek istedim. Belki birkaç byte golf oynayabilir. EDIT: Ve gerçekten de, @ Grimy'nin 05AB1E cevabının özyinelemeli versiyonunu aşağıda görebilirsiniz, ki bu 13 bayttır .
n
n£
è
£
Açıklama:
a ( n ) = a ( n - 1 ) + ∑n - 1k = 2( a ( k ) ⋅ a ( n - 1 - k ) )
a ( 0 ) = a ( 1 ) = a ( 2 ) = a ( 3 ) = 1
λ # Create a recursive environment,
£ # to output the first (implicit) input amount of results after we're done
4Å1 # Start this recursive list with [1,1,1,1], thus a(0)=a(1)=a(2)=a(3)=1
# Within the recursive environment, do the following:
λ # Push the list of values in the range [a(0),a(n)]
¨ # Remove the last one to make the range [a(0),a(n-1)]
 # Bifurcate this list (short for Duplicate & Reverse copy)
¦¦ # Remove the first two items of the reversed list,
# so we'll have a list with the values in the range [a(n-3),a(0)]
s # Swap to get the [a(0),a(n-1)] list again
¦¦ # Remove the first two items of this list as well,
# so we'll have a list with the values in the range [a(2),a(n-1)]
* # Multiply the values at the same indices in both lists,
# so we'll have a list with the values [a(n-3)*a(2),...,a(0)*a(n-1)]
O # Take the sum of this list
₁ + # And add it to the a(n-1)'th value
# (afterwards the resulting list is output implicitly)
@Grimy'nin 13 bayt sürümü ( eğer henüz yapmadıysanız cevabını yükseltmediğinizden emin olun !):
1λ£λ1šÂ¨¨¨øPO
n
Yine 0 temelli indeksleme veya bunun yerine sonsuz bir listeyle değiştirilebilir:
- (0 temelli) indeksleme 1λèλ1šÂ¨¨¨øPO
:
λλ1šÂ¨¨¨øPO
a ( 0 ) = 1
Açıklama:
a ( n ) = ∑n - 1k = 2( a ( k ) ⋅ a ( n - 2 - k ) )
a ( - 1 ) = a ( 0 ) = a ( 1 ) = a ( 2 ) = 1
λ # Create a recursive environment,
£ # to output the first (implicit) input amount of results after we're done
1 # Start this recursive list with 1, thus a(0)=1
# Within the recursive environment, do the following:
λ # Push the list of values in the range [a(0),a(n)]
1š # Prepend 1 in front of this list
 # Bifurcate the list (short for Duplicate & Reverse copy)
¨¨¨ # Remove (up to) the last three value in this reversed list
ø # Create pairs with the list we bifurcated earlier
# (which will automatically remove any trailing items of the longer list)
P # Get the product of each pair (which will result in 1 for an empty list)
O # And sum the entire list
# (afterwards the resulting list is output implicitly)
a(n-1-k)
içina(n-k)
doğru?