Balçık: Bölge Savaşı


18

Sen bir sümük yerküresin. Doğal olarak, balçık olarak, mümkün olduğunca fazla alana sızmak istiyorsunuz. Ama aynı şeyi yapmak isteyen 3 tane daha ince var. Üstün balçık kim olacak?

Açıklama

Tüm inceltmeler tek bir arenada toplanacak. Yargıçlar (yani kontrol programı) tüm olası 4-balçık kombinasyonlarının kapsamlı bir listesinden geçecek, bunları bir masanın köşelerine yerleştirecek ve en çok alanda hangi balçık sızdığını görecektir.

İnceltmeleriniz her turda 3 işlemden birini yapabilir: yay, zıpla veya birleştir. Bu anlamların ne olduğu hakkında daha fazla bilgi Çıktı bölümünde sunulacaktır .

Yönetim Kurulu / Arena

Arena bir kare tahta olacak (şu anda 8x8, ancak bu gelecekte değişebilir). İşte devam eden bir oyunun örnek arenası:

11111222
11111444
11.22444
.1222.4.
333.3244
33333.44
333...44
333....4

Balçık 1'den 4'e kadar sayılarla (1'den 4'e kadar oyuncular) temsil edilir ve boş alan bir nokta ( .) ile temsil edilir . Başlangıçta kart, sol üst köşedeki tek bir oyuncu 1'in balçık, sağ üstteki oyuncu 2, sol altta oyuncu 3 ve sağ altta oyuncu 4 hariç tüm boş alan olarak başlar.

Koordinatlar, koddaki okunabilirlik için 0 tabanlı satır ve sütun dizini ile temsil edilir. Örneğin, koordinatlar (3, 6) 4. sıradaki 7. kareyi temsil eder (yukarıdaki örnekte a 4). (Bu, karelere erişmeyi kolaylaştırır:) board[coords.x][coords.y]İşte görsel bir örnek:

(0, 0) (0, 1) (0, 2)
(1, 0) (1, 1) (1, 2)
(2, 0) (2, 1) (2, 2)

Giriş

Programınızın girdisi, hangi oyuncu olduğunuz (1, 2, 3 veya 4), bir virgül ( ,), ardından tahta / arena içeriği (yeni satırlar virgülle değiştirilir) olacaktır. Örneğin, yukarıdaki senaryoda 3. oyuncu olsaydınız, girdiniz şöyle olur:

3,11111222,11111444,11.22444,.1222.4.,333.3244,33333.44,333...44,333....4

Çıktı

Programınızın 4 tamsayı çıkması gerekir. İlk ikisi sırasıyla taşımak istediğiniz balçıkın satır ve sütun dizinidir ve sonraki ikisi, taşımak istediğiniz yerin satır ve sütun dizinidir.

Her dönüşte üç seçeneğiniz vardır: Yaymak, atlamak veya birleştirmek.

  • Yayılmış

    Yaymak için, hedef koordinatlar taşınan balçıktan tam olarak bir kare uzakta olmalı ve hedef koordinatlardaki kare boş alan olmalıdır. Yayma, yeni bir balçık hedef koordinatlarında oluşturulur ve eski balçık olduğu değil kaldırıldı. Yeni balçık oluşturulduktan sonra, bu yeni balçık etrafındaki 8 karedeki tüm düşman incelmeleri hareket eden oyuncuya dönüştürülür.

    Örneğin, Şekil 1'deki kartla, eğer oyuncu 1 çıkarsa 0 1 1 2, sonuç Şekil 2'deki kart olacaktır.

    1.         2.
      11.22      11.12
      1..22      1.112
      ..22.      ..11.
      .....      .....
    
  • Atlama

    Atlamak için hedef koordinatlar, taşınan balçıktan tam olarak iki kare uzakta olmalı ve hedef koordinatlardaki kare boş alan olmalıdır. Jüpming yaparken, hedef koordinatlarda yeni bir balçık oluşturulur ve eski balçık kaldırılır. Yeni balçık oluşturulduktan sonra, bu yeni balçanın etrafındaki 8 karedeki tüm düşman incelmeleri hareket eden oyuncuya dönüştürülür.

    Örneğin, Şekil 1'deki kartla, eğer oyuncu 1 çıkarsa 0 1 2 3, sonuç Şekil 2'deki kart olacaktır.

    1.         2.    
      11..2      1...2
      1...2      1...1
      ....2      ...11
      ...22      ...11
    
  • Birleştirmek

    Birleştirmek için, hedef koordinatlar taşınan balçıktan tam olarak bir kare uzakta olmalı ve hedef koordinatlardaki kare aynı oyuncunun balçıkı olmalıdır. Birleştirme sırasında eski balçık kaldırılır. Ardından, hedef balçık etrafındaki 8 karedeki tüm boş alanlar, hareket eden oynatıcıya dönüştürülür (taşınan eski balçık dahil değil).

    Örneğin, Şekil 1'deki kartla, eğer oyuncu 1 çıkarsa 0 1 1 2, sonuç Şekil 2'deki kart olacaktır.

    1.         2.
      11..2      1.112
      1.1.2      11112
      ....2      .1112
      ..222      ..222
    

Ayrıca geçersiz koordinatları (ör. 0 0 0 0) Çıkararak da geçebilirsiniz .

Kurallar ve kısıtlamalar

Ek kurallar:

  • Verileri devam ettirmek için kendi klasörünüzdeki dosyaları okuyabilir ve yazabilirsiniz (gönderiler depolanır players/YourBotName/yourBotName.language), ancak bunun dışında başka bir şeyi değiştiremez veya bunlara erişemezsiniz. İnternet erişimi yasaktır.
  • Gönderiminiz başka bir gönderime yardımcı olmak veya zarar vermek için özel olarak kodlanamayabilir. (Birden fazla gönderiminiz olabilir, ancak birbirleriyle hiçbir şekilde etkileşime girmemeleri gerekir.)
  • Gönderinizin tur başına 0,1 saniyeden fazla sürmemesi gerekir. Gönderiniz zaman zaman 0.105 saniye sürüyorsa, bu iyidir, ancak bu zaman sınırından tutarlı bir şekilde daha uzun sürmeyebilir. (Bu, testin aşırı uzun zaman almasını önlemek için temel olarak bir sağlık kontrolüdür.)
  • Gönderiminiz farklı bir dilde olsa bile, bir başkasının tam kopyası olmamalıdır (yani tam olarak aynı mantığı kullanmalıdır).
  • Sunmanız ciddi bir sunum olmalıdır. Bu görüşe dayalıdır, ancak başvurunuz açıkça meydan okumayı çözmeye çalışmazsa (örn. Her turdan geçerseniz), diskalifiye edilecektir.

Gönderiminiz bu kurallardan herhangi birini ihlal ederse veya spesifikasyona uymazsa, diskalifiye edilir, buradan kaldırılır playerlist.txtve oyun baştan başlar. Gönderiminiz diskalifiye edilirse, gönderinize nedenini açıklayan bir yorum bırakacağım. Aksi takdirde, gönderiminiz skor tablosuna eklenecektir. (Gönderinizi skor tablosunda görmüyorsanız, yayınınızla ilgili açıklayıcı bir yorumunuz yoksa ve gönderinizi aşağıdaki "Son güncelleme tarihi" saatinden önce yayınladıysanız, lütfen bana söyleyin! Yanlışlıkla göz ardı etmiş olabilirim.)

Girişinize lütfen şunları ekleyin:

  • Bir isim.
  • Bir kabuk komut (örneğin, programı çalıştırmak için java MyBot.java, ruby MyBot.rb, python3 MyBot.pyvb.)
    • Girişin (oynatıcınız ve haritanız) buna bir komut satırı argümanı olarak ekleneceğini unutmayın.
    • Programlar Ubuntu 14.04 üzerinde test edilecektir, bu nedenle kodunuzun üzerinde (serbestçe) çalıştırılabildiğinden emin olun.
  • Kodunuz dilinizin farklı sürümlerinde farklı çalışıyorsa, sürüm numarası.
  • Botunuzun kodu.
  • Gerekirse kodun nasıl derleneceğine ilişkin talimatlar.

Denetleyici kodu / testi, örnek bot

Denetleyici kodu C ++ ile yazılmıştır ve Github'da bulunabilir . Kodunuzun nasıl çalıştırılacağı ve test edileceği ile ilgili diğer talimatları burada bulabilirsiniz.

simplebot.rbGithub'a rastgele bir balçık rastgele bir konuma yayan veya atlayan çok basit bir bot da Github'da yayınlandı .

Puanlama ve skor tablosu

Tahtadaki tüm kareler dolduğunda oyun biter ve skorlar hesaplanır. Bir oyuncunun son skoru, oyunun sonunda balçıklarını içeren karelerdir. Eğer 2000 tur geçtiyse (her oyuncu için 500) ve oyun hala bitmediyse, oyun yine de sona erecek ve skorlar oyun bitmiş gibi rapor edilecektir.

Turnuvanın sonunda, tüm oyunlardan alınan puanların ortalaması, her bir oyuncunun skor tablosunda yayınlanacak final skorunu hesaplamak için alınır. Son başvuru tarihi yoktur; Yeni gönderimler geldikçe skor tablosunu düzenli olarak güncellemeye devam edeceğim.

Gerçek bir skor tablosu görünene kadar 4 gönderim gereklidir.

+--------------------------+-----------+--------------------+
| Name                     | Avg Score | Last Updated (UTC) |
+--------------------------+-----------+--------------------+
| GreedySlime              | 47.000    | Jul 22 10:27 PM    |
| Jumper                   | 12.000    | Jul 22 10:27 PM    |
| ShallowBlue              | 5.000     | Jul 22 10:27 PM    |
| Lichen                   | 0.000     | Jul 22 10:27 PM    |
+--------------------------+-----------+--------------------+

Son Güncelleştirme: 22 Tem 22:27 (UTC).


Hmm, kaçırmış olabilirdim, ama oyuncular arasındaki etkileşimin nasıl olacağını açıkladın mı? Herkes aynı anda hareket ediyor mu? Oyuncu 1 önce mi?
justhalf

1
Belki bunu biraz belirsiz bulan sadece benim, ama tam olarak “iki kareyi” nasıl tanımlıyorsunuz?
arshajii

Doksanlı yıllardaki bir içeceğe dayanan bir oyunun çoğunu hatırlatıyor. ;-)
Benny

@justhalf Önce Oyuncu 1 hamle yapar.
Kapı tokmağı

1
@arshajii "İki kare uzakta", resmi olarak "X'teki ve Y'deki değişimin maksimum 2'ye eşit olduğu herhangi bir konumda anlamına gelir."
Kapı Tokmağı

Yanıtlar:


4

GreedySlime

Basitçe balçık birimlerinin en büyük net kazancını üreten hareketi yapar.

Bunun Python 2.x ile yazıldığını unutmayın .

def gen_moves(board, pos):
    """Generate valid moves for a given position.

    Return value is a tuple of the form
       (type, from_x, from_y, to_x, to_y)

    The move 'type' is a single character with:
        - 's' = spread
        - 'j' = jump
        - 'm' = merge
    """

    N = len(board)
    x0, y0 = pos
    player = board[x0][y0]

    for i in -2,-1,0,1,2:
        for j in -2,-1,0,1,2:
            if (i == 0 and j == 0):
                continue

            x1, y1 = x0 + i, y0 + j

            if not ((0 <= x1 < N) and (0 <= y1 < N)):
                continue

            c = board[x1][y1]

            if -1 <= i <= 1 and -1 <= j <= 1:
                if c == '.':
                    yield ('s', x0, y0, x1, y1)
                elif c == player:
                    yield ('m', x0, y0, x1, y1)
            else:
                if c == '.':
                    yield ('j', x0, y0, x1, y1)

def eval_move(board, move, initial_net={'s': 1, 'j': 0, 'm': -1}):
    """Evaluates given move in given context.

    - Assumes move is valid.
    - `move` argument is a tuple of the form
       (type, from_x, from_y, to_x, to_y)
    - The move 'type' is a single character with:
        - 's' = spread
        - 'j' = jump
        - 'm' = merge
    """

    N = len(board)
    move_type = move[0]
    x0, y0, x1, y1 = move[1:]
    player = board[x0][y0]

    net = initial_net[move_type]
    for i in -1,0,1:
        for j in -1,0,1:
            if (i == 0 and j == 0):
                continue

            x2, y2 = x1 + i, y1 + j

            if not ((0 <= x2 < N) and (0 <= y2 < N)):
                continue

            c = board[x2][y2]

            if (move_type == 'm' and c == '.') or (move_type != 'm' and c != player and c != '.'):
                net += 1

    return net

def main():
    from sys import argv
    data = argv[1]

    player, board = data.split(',', 1)
    board = map(list, board.split(','))
    N = len(board)

    all_pos_gen = ((a,b) for a in range(N) for b in range(N) if board[a][b] == player)
    all_move_gen = (move for pos in all_pos_gen for move in gen_moves(board, pos))
    move = max(all_move_gen, key=lambda move: eval_move(board, move))

    print move[1], move[2], move[3], move[4]

if __name__ == "__main__":
    main()

Örnek çalışma (meydan okuma açıklamasında verilen örneği kullanarak ve kodun adlı bir dosyaya kaydedildiği varsayılarak slime.py):

$ python slime.py 3,11111222,11111444,11.22444,.1222.4.,333.3244,33333.44,333...44,333....4
4 0 2 2

3

Sığ mavi

Sığ mavi , olası hareketlerin kapsamlı bir ağaç aramasını yaparak gelecekte ne olabileceğini anlamaya çalışır , maalesef bir sonraki dönüşünden daha fazla alamaz. Daha sonra bir sonraki turundan sonra olası her tahtada yarım yamalak skoru tokatlar, her bir dal için eşit derecede gülünç bir formülle bir skor hesaplar ve: ideal hareket bilinir!

EDIT: Orijinal kod çok yavaş waay koştu, bu yüzden sadece mümkün olan tüm hamle rastgele bir örnek alır böylece değiştirdi. Mümkün olan çok az hareket olduğunda neredeyse tüm hareketleri ve daha fazla hareket olduğunda daha küçük bir yüzdeyi deneyecektir.

import java.awt.Point;  

    public class ShallowBlue {
        private static final int MAX_ROUNDS = 5, PLAYERS = 4;
        static int me = 0;

        public static void main(String[] args) {
            if (args[0] == null) {
                return;
            }

            me = Integer.parseInt(args[0].split(",", 2)[0]);
    String board = args[0].split(",", 2)[1];

    System.out.println(getBestMove(board, me, MAX_ROUNDS - 1));
}

private static String getBestMove(String board, int player, int rounds) {
    String [] boards = new String[24];
    int checkedBoards = 1;
    char playerChar = Integer.toString(player).charAt(0);
    String tempMove = getMove(0, 0, 0, 0);
    String tempBoard = calculateMove(board, tempMove); 
    boards[0] = tempBoard;
    String bestMove = tempMove;
    double us = numberOfUs(board, playerChar); 
    double skip = (us*2.5/(us*2.5 + 1))/4 + 0.735;
    if (rounds == MAX_ROUNDS - 2) {
        skip = skip*skip;
    }

    float bestScore, worstScore, averageScore, tempScore;
    int scores;

    if (rounds == 0) {
        tempScore = calculateScore(tempBoard, MAX_ROUNDS - rounds - 1);
    } else {
        tempScore = getScore(getBestMove(tempBoard, player%PLAYERS + 1, rounds - 1));
    }

    scores = 1;
    bestScore = tempScore;
    worstScore = tempScore;
    averageScore = tempScore;

    for (int x = 0; x < 8; x++) {
        for (int y = 0; y < 8; y++) {
            if (getCharAt(board, x, y) == playerChar) {
                Point[] possibleMergers = getNeighboringMatches(board, new Point(x, y), playerChar);
                if (possibleMergers[0] != null) {
                    tempMove = getMove(possibleMergers[0].x, possibleMergers[0].y, x, y); 
                    tempBoard = calculateMove(board, tempMove);
                    if (addIfUnique(boards, tempBoard, checkedBoards)) {
                        checkedBoards++;
                        if ((rounds != MAX_ROUNDS - 1) && (rounds == 0 || Math.random() < skip)) {
                            tempScore = calculateScore(tempBoard, MAX_ROUNDS - rounds - 1);
                        } else {
                            tempScore = getScore(getBestMove(tempBoard, player%PLAYERS + 1, rounds - 1));
                        }

                        if (tempScore > bestScore) {
                            bestMove = tempMove;
                        }
                        bestScore = Math.max(tempScore, bestScore);
                        worstScore = Math.min(tempScore, worstScore);

                        scores++;
                        averageScore = (averageScore*(scores - 1) + tempScore)/scores;
                    }
                }
            } else if (getCharAt(board, x, y) == '.') {
                Point[] possibleSpreaders = getNeighboringMatches(board, new Point(x, y), playerChar);
                int i = 0;
                while (i < possibleSpreaders.length && possibleSpreaders[i] != null) {
                    tempMove = getMove(possibleSpreaders[i].x, possibleSpreaders[i].y, x, y); 
                    tempBoard = calculateMove(board, tempMove);
                    if ((rounds != MAX_ROUNDS - 1) && (rounds == 0 || Math.random() < skip)) {
                        tempScore = calculateScore(tempBoard, MAX_ROUNDS - rounds - 1);
                    } else {
                        tempScore = getScore(getBestMove(tempBoard, player%PLAYERS + 1, rounds - 1));
                    }

                    if (tempScore > bestScore) {
                        bestMove = tempMove;
                    }
                    bestScore = Math.max(tempScore, bestScore);
                    worstScore = Math.min(tempScore, worstScore);

                    scores++;
                    averageScore = (averageScore*(scores - 1) + tempScore)/scores;

                    i++;
                }
                Point[] possibleJumpers = getNextNeighboringMatches(board, new Point(x, y), playerChar);
                i = 0;
                while (i < possibleJumpers.length && possibleJumpers[i] != null) {
                    tempMove = getMove(possibleJumpers[i].x, possibleJumpers[i].y, x, y); 
                    tempBoard = calculateMove(board, tempMove);
                    if ((rounds != MAX_ROUNDS - 1) && (rounds == 0 || Math.random() < skip)) {
                        tempScore = calculateScore(tempBoard, MAX_ROUNDS - rounds - 1);
                    } else {
                        tempScore = getScore(getBestMove(tempBoard, player%PLAYERS + 1, rounds - 1));
                    }

                    if (tempScore > bestScore) {
                        bestMove = tempMove;
                    }
                    bestScore = Math.max(tempScore, bestScore);
                    worstScore = Math.min(tempScore, worstScore);

                    scores++;
                    averageScore = (averageScore*(scores - 1) + tempScore)/scores;

                    i++;
                }
            }
        }
    }

    if (rounds == MAX_ROUNDS - 1) {
        return (bestMove);
    } else {
        return getScoreString(bestScore, worstScore, averageScore);
    }
}

private static int numberOfUs(String board, char playerChar) {
    int us = 0;

    for (int i = 0; i < board.length(); i++ ) {
         if (board.charAt(i) == playerChar) {
            us++;
        }
    }

    return us;
}

private static float calculateScore(String board, int roundsPassed) {
    int empties = 0;
    int us = 0;
    int enemy1 = 0;
    int enemy2 = 0;
    int enemy3 = 0;
    for (int i = 0; i < board.length(); i++ ) {
        if (board.charAt(i) == '.') {
            empties++;
        } else if (board.charAt(i) == Integer.toString(me).charAt(0)) {
            us++;
        } else if (board.charAt(i) == Integer.toString(me%PLAYERS + 1).charAt(0)) {
            enemy1++;
        } else if (board.charAt(i) == Integer.toString(me%PLAYERS + 2).charAt(0)) {
            enemy2++;
        } else if (board.charAt(i) == Integer.toString(me%PLAYERS + 3).charAt(0)) {
            enemy3++;
        }
    }

    if (us != 0) {
        us += roundsPassed;
    }

    if (enemy1 != 0) { 
        enemy1 = enemy1 + (roundsPassed + 3)%PLAYERS;
    }

    if (enemy2 != 0) { 
        enemy2 = enemy2 + (roundsPassed + 2)%PLAYERS;
    }

    if (enemy3 != 0) { 
        enemy3 = enemy3 + (roundsPassed + 1)%PLAYERS;
    }

    return us*(empties + 1)/(Math.max(Math.max(enemy1, enemy2), enemy3) + 1);
}

private static float getScore(String scoreString) {
    float bestScore, worstScore, averageScore;
    String[] scores = new String[3];

    scores = scoreString.split(",");
    bestScore = Float.parseFloat(scores[0]);
    worstScore = Float.parseFloat(scores[1]);
    averageScore = Float.parseFloat(scores[2]);


    return (float) Math.sqrt(Math.sqrt(bestScore*averageScore*worstScore*worstScore));
}

private static String getScoreString(float bestScore, float worstScore, float averageScore) {
    return Float.toString(bestScore) + ',' + Float.toString(worstScore) + ',' + Float.toString(averageScore);
}

private static boolean addIfUnique(String[] boards, String board, int checkedBoards) {
    int i = 0;

    while (i < boards.length && boards[i] != null) {
        if (boards[i].equals(board)) {
            return false;
        }
        i++;
    }

    if (i < boards.length) {
        boards[i] = board;
    } else {
        boards[checkedBoards%boards.length] = board;
    }

    return true;
}

private static String calculateMove(String board, String move) {
    int x1 = Integer.parseInt(Character.toString(move.charAt(0)));
    int y1 = Integer.parseInt(Character.toString(move.charAt(2)));
    int x2 = Integer.parseInt(Character.toString(move.charAt(4)));
    int y2 = Integer.parseInt(Character.toString(move.charAt(6)));

    if ((Math.abs(y1 - y2) == 2 || Math.abs(x1 - x2) == 2) 
            &&  getCharAt(board, x2, y2) == '.') {
        Point[] enemies = new Point[8];

        enemies = getNeighboringEnemies(board, new Point(x1, y1), Integer.parseInt(Character.toString(getCharAt(board, x1, y1))));

        board = replace(board, enemies, getCharAt(board, x1, y1));
        Point[] middle = {new Point(x1, y1)};
        board = replace(board, middle, '.');
    }

    if ((Math.abs(y1 - y2) == 1 || Math.abs(x1 - x2) == 1)) { 
        if (getCharAt(board, x2, y2) == '.' || getCharAt(board, x1, y1) == getCharAt(board, x2, y2)) {
            boolean merge = true;
            if (getCharAt(board, x2, y2) == '.') {
                merge = false;
            }

            Point[] spaces = new Point[8];
            spaces = getNeighboringMatches(board, new Point(x1, y1), '.');
            board = replace(board, spaces, getCharAt(board, x1, y1));

            if (merge) {
                Point[] source = {new Point(x1, y1)};
                board = replace(board, source, '.');
            }
        }
    }

    return board;
}

private static String replace(String board, Point[] targets, char source) {
    int i = 0;

    while (i < targets.length && targets[i] != null) {
        if (targets[i].x == 7 && targets[i].y == 7) {
            board = board.substring(0, getIndexAt(targets[i].x, targets[i].y)) + source;
        } else if (targets[i].x == 0 && targets[i].y == 0) {
            board = source + board.substring(getIndexAt(targets[i].x, targets[i].y) + 1);
        } else {
            board = board.substring(0, getIndexAt(targets[i].x, targets[i].y)) + source + board.substring(getIndexAt(targets[i].x, targets[i].y) + 1);
        }
        i++;
    }

    return board;
}

private static Point[] getNeighboringMatches(String board, Point coord, char match) {
    Point[] matches = new Point[8];

    int i = 0;
    for (int x = coord.x - 1; x <= coord.x + 1; x++) {
        for (int y = coord.y - 1; y <= coord.y + 1; y++) {
            if ((y != coord.y || x != coord.x ) && getCharAt(board, x, y) == match){
                matches[i] = new Point(x, y);
                i++;
            }
        }
    }

    return matches;
}

private static Point[] getNeighboringEnemies(String board, Point coord, int player) {
    Point[] enemies = new Point[8];

    for (int i = 1; i <= PLAYERS; i++){
        enemies = mergeArr(enemies, getNeighboringMatches(board, coord, Integer.toString((player + i - 1)%PLAYERS + 1).charAt(0)));
    }

    return enemies;
}

private static Point[] getNextNeighboringMatches(String board, Point coord, char match) {
    Point[] matches = new Point[16];

    int i = 0;
    for (int x = coord.x - 2; x <= coord.x + 2; x++) {
        for (int y = coord.y - 2; y <= coord.y + 2; y++) {
            if ((Math.abs(y - coord.y) == 2 || Math.abs(x - coord.x) == 2) && getCharAt(board, x, y) == match){
                matches[i] = new Point(x, y);
                i++;
            }
        }
    }

    return matches;
}

private static char getCharAt(String board, int x, int y) {

    if (x >= 0 && x < 8 && y >= 0 && y < 8) {
        return board.charAt(9*x + y);
    } else {
        return '\0';
    }
}

private static int getIndexAt(int x, int y) {
    return 9*x + y;
}

private static Point[] mergeArr(Point[] arr1, Point[] arr2) {
    int i = 0;
    int j = 0;

    while (i < arr1.length && arr1[i] != null) {
        i++;
    }

    while (j < arr2.length && arr2[j] != null) {
        arr1[i + j] = arr2[j];
        j++;
    }

    return arr1;
}

private static String getMove(int x1, int y1, int x2, int y2) {
    return Integer.toString(x1) + " " + Integer.toString(y1) + " " + Integer.toString(x2) + " " + Integer.toString(y2);
    }
}

Ben bir programcı değilim ve bu yaklaşım tahmin ettiğimden çok daha karmaşıktı, ben bu kodu henüz (hiç) 3 am olduğu gibi test etmedim ve yarın erken çalışmaya başlamalıyım. Botumun zaman aşımına uğraması veya hiç çalışmaması oldukça mümkündür. Ayrıca koordinatları yanlış anlamış olabilirim, yarın taze gözlerle bir kez daha bakacağım, ama ekstra bir çift (veya daha fazla) her zaman açığız, ekstra bir çift (daha deneyimli) göz.
overactor

Bunun için bir grup istisna alıyorum ( stacktrace için sohbete bakınız ).
Kapı Tokmağı

Kodum nihayet çalışıyor, ancak atladığım dalların yüzdesini azaltabilmek için umutsuzca hızı artırmam gerekiyor. Herkes bu karmaşa geliştirmek için biliyor mu?
overactor

Golf olmadığı için Kod İncelemesinde yayınlayabilirsiniz ... Bu kurallar dahilinde mi yoksa kaşlarını çatmak mı?
trichoplax

1
Bu cevabı iki gün önce gördüm, ama "Sığ Mavi" nin ünlü "Derin Mavi" için bir cin olduğunu fark ettim.
justhalf

2

atlamacı

Atlamayı sever, daha da ortasına doğru.

Hiçbir inceltme atlayamazsa geçecektir.

C ++ , Sadece derleme yapmalıg++ jumper.cpp -o jumper

#include <math.h>
#include <algorithm>
#include <iostream>
#include <string>
#include <sstream>
#include <vector>
#define maxn(x, y) ((x) > (y) ? (x) : (y))
#define absn(x) ((x) < 0 ? -(x) : (x))
class Board {
 public:
    Board(std::string input_string);
    void Move();
 private:
    void ParseBoardState(std::string console_string);
    int Slimes(int cell);
    void GetXY(int cell, int& r, int& c);
    bool CanJumpFromHere(int cell, int& jump_to_cell, int& rad);
    int CalcRadius(int cell);
    bool CheckJumpDist(int x, int y);

    int player_num_;
    std::size_t board_dim_;
    std::size_t sq_;
    std::vector< std::vector<int> > slimes_;
};
Board::Board(std::string input_string) 
    : player_num_(0), 
      board_dim_(0),
      slimes_() {
    board_dim_ = std::count(input_string.begin(), input_string.end(), ',');
    sq_ = board_dim_ * board_dim_;
    std::istringstream temp(input_string.substr(0,1));
    temp >> player_num_;
    ParseBoardState(input_string);
}
void Board::ParseBoardState(std::string console_string) {
    int place = 0;
    for (std::size_t row = 0; row < board_dim_; ++row ) {
        slimes_.push_back(std::vector<int>());
        place = console_string.find(",",place+1);
        std::string temp2 = console_string.substr(place+1, 8);
        for (std::size_t col = 0; col < board_dim_; ++col ) {
            int sl = 0;
            std::istringstream bint(temp2.substr(col,1));
            bint >> sl;
            slimes_[row].push_back(sl);
        }
    }
}
int Board::Slimes(int cell) {
    int r = 0;
    int c = 0;
    GetXY(cell, r, c);
    return  slimes_[r][c];
}
void Board::GetXY(int cell, int& r, int& c) {
    for (std::size_t row = 0; row < board_dim_; ++row ) {
        for (std::size_t col = 0; col < board_dim_ ; ++col ) {
            if ( (row * board_dim_ + col) == cell) {
                r = row;
                c = col;
            }
        }
    }
}
void Board::Move() {

    // go through each cell:
    int index = 0;
    int jump_to_cell = 0;
    int rad = 0;
    int min_rad = 1000;
    int best_jump_to = -1;
    int best_jump_from = -1;
    for (int c = 0; c < sq_; ++c) {
        if (Slimes(c) == player_num_) {
            if (CanJumpFromHere(c, jump_to_cell , rad)) {
                if (rad < min_rad) {
                    best_jump_from = c;
                    best_jump_to = jump_to_cell;
                    min_rad = rad;
                }
                index += 1;
            }
        }
    }

    int ret_row = 0;
    int ret_col = 0;

    if (index == 0) {
        // can't jump so dont bother:
        std::cout << "0 0 0 0" << std::endl;
    } else {
        GetXY(best_jump_from, ret_row, ret_col);
        std::cout << ret_row << " " << ret_col  << " ";
        GetXY(best_jump_to, ret_row, ret_col);
        std::cout << ret_row << " " << ret_col << std::endl;
    }
}
bool Board::CanJumpFromHere(int cell, int& ret_jump_to_cell, int & ret_rad) {
    int r = 0;
    int c = 0;
    int rad = 10000;
    int jump_to_cell = 0;
    int rad_min_for_this_cell = 10000;
    GetXY(cell, r, c);
    bool jumpable = false;
    for (int row_test = -2; row_test < 3; ++row_test) {
        for (int col_test = -2; col_test < 3; ++col_test) {
            if ( (r + row_test) > 0 &
                 (r + row_test) < board_dim_ &&
                 (c + col_test) > 0 &&
                 (c + col_test) < board_dim_ &&
                 (CheckJumpDist(col_test, row_test)) &&
                 (slimes_[r+row_test][c+col_test] == 0)) {

                jumpable = true;
                jump_to_cell = (r + row_test) * board_dim_ + c + col_test;
                rad = CalcRadius(jump_to_cell);

                if (rad < rad_min_for_this_cell) {
                    ret_rad = rad;
                    ret_jump_to_cell = jump_to_cell;
                    rad_min_for_this_cell = ret_rad;
                }
            }
        }
    }
    return jumpable;
}
bool Board::CheckJumpDist(int x, int y) {
    int maxDelta = maxn(absn(x), absn(y));
    if (maxDelta <= 0 || maxDelta > 2) {
        return false;
    } else {
        return true;
    }
}
int Board::CalcRadius(int cell) {
    int r = 0;
    int c = 0;
    GetXY(cell, r, c);
    // unnecessary accuracy considering how bad this bot is:
    float mid = static_cast<float>(board_dim_) / 2;
    float rad = sqrt((r - mid) * (r - mid) + (c-mid)*(c-mid));
    int ret = static_cast<int>(rad + 0.5);
    return ret;
}
int main(int argc, char* argv[]) {
    if (argc != 2) {
        return 0;
    } else {
        std::string input_string(argv[1]);
        Board board(input_string);
        board.Move();
    }
    return 0;
}

Taşınma doğrulamanı özür dilerim. Ayrıca başladıktan hemen sonra doğru kodlama uygulamalarından vazgeçtim, o yüzden bakma. Ancak, herhangi bir boyutta tahta üzerinde çalışıyor gibi görünüyor.


2

DeathSlime :

Tanıtım : En zayıf düşmanı avlamaya ve yok etmeye çalışır. Tekrar et.

Nasıl çalıştırılır : Ruby DeathSlime.rb

Yakut Sürümü : 2.1.2

#!/usr/bin/env ruby
class PlayerPosition;
  attr_accessor :x, :y;
  def initialize(x, y) @x = x; @y = y; end
  def distance(pos) Math.sqrt((pos.x - @x)**2 + (pos.y - @y)**2); end
end

class Board
  attr_reader :player, :empty_positions
  def initialize(player_id, game_state_string)
    @player_positions = {}
    @empty_positions = []

    @enemies = []
    @player = Player.new

    row = 0
    col = 0
    game_state_string.chars.each do |tile|
      row += 1 and col = 0 and next if tile == ','
      @empty_positions << PlayerPosition.new(col, row) and col += 1 and next if tile == '.'

      @player_positions[tile] ||= []
      @player_positions[tile] << PlayerPosition.new(col, row)
      col += 1
    end

    @player_positions.each do |id, positions|
      @enemies << Player.new(id, positions) if id != player_id
      @player = Player.new(id, positions) if id == player_id
    end
  end

  def border_space(player_positions, possible_border, allowance = 1)
    near = []
    possible_border.each do |border|
      is_near = false
      player_positions.each {|pos| is_near = true and break if pos.distance(border) <= allowance}
      near << border if is_near
    end
    near
  end

  def closest_to(player_positions, enemy_positions)
    player_closest_block = nil
    shortest_distance = 1000
    enemy_closest_block = nil
    player_positions.each do |player|
      enemy_positions.each do |enemy|
        if player.distance(enemy) < shortest_distance
          shortest_distance = player.distance(enemy)
          enemy_closest_block = enemy
          player_closest_block = player
        end
      end
    end
    return player_closest_block, enemy_closest_block
  end

  def empty_space_near(player_positions, allowance = 1); border_space(player_positions, @empty_positions, allowance); end
  def weakest_enemy; @enemies.select{|enemy| !enemy.dead? }.sort {|x,y| x.strength <=> y.strength}.first; end
end

class Player
  attr_reader :positions
  def initialize(id = -1, positions = []); @id = id; @positions = positions; end
  def dead?; @positions.length == 0; end
  def strength; @positions.length; end
  def can_hurt?(enemy)
    is_close_enough = false
    self.positions.each do |my_pos|
      enemy.positions.each {|enemy_pos| is_close_enough = true and break if my_pos.distance(enemy_pos) <= 2 }
    end
    is_close_enough
  end
end




class DeathSlime

  def initialize(arg_string)
    game_state = arg_string[2..-1]
    player_id = arg_string[0]
    @board = Board.new(player_id, game_state)
  end

  def attack
    if @board.weakest_enemy
      try_to_spread_to_weakest || try_to_jump_to_weakest || try_to_merge_to_weakest || try_to_move_to_weakest
    else
      try_to_move if @empty_positions.length > 0
    end
  end


  def try_to_spread_to_weakest
    mine = @board.empty_space_near(@board.player.positions, 1)
    theirs = @board.empty_space_near(@board.weakest_enemy.positions, 1)
    target_space = mine.detect{|space| theirs.include?(space) }
    return move(@board.closest_to(@board.player.positions, [target_space]).first, target_space) if target_space
    false
  end

  def try_to_jump_to_weakest
    mine = @board.empty_space_near(@board.player.positions, 2)
    theirs = @board.empty_space_near(@board.weakest_enemy.positions, 1)
    target_space = mine.detect{|space| theirs.include?(space) }
    return move(@board.closest_to(@board.player.positions, [target_space]).first, target_space) if target_space
    false
  end

  def try_to_merge_to_weakest
    definite_border = nil
    definite_merge = nil
    possible_border = @board.border_space(@board.weakest_enemy.positions, @board.player.positions)
    possible_border.each do |border|
      possible_merges = @board.border_space([ border ], @board.player.positions.select{|space| space != border })
      definite_merge = possible_merges.first and definite_border = border and break if possible_merges.length > 0
    end
    return move(definite_merge, definite_border) if definite_border && definite_merge
    false
  end

  def try_to_move_to_weakest
    player_closest, enemy_closest = @board.closest_to(@board.player.positions, @board.weakest_enemy.positions)
    spreading_distance = @board.empty_space_near([player_closest], 1)
    jumping_distance = @board.empty_space_near([player_closest], 2)
    theirs = @board.empty_space_near(@board.player.positions, 2)

    spreading_space = spreading_distance.detect{|space| theirs.include?(space) }
    return move(@board.closest_to(@board.player.positions, [spreading_space]).first, spreading_space) if spreading_space

    jumping_space = jumping_distance.detect{|space| theirs.include?(space) }
    return move(@board.closest_to(@board.player.positions, [jumping_space]).first, jumping_space) if jumping_space

    return move(@board.closest_to(@board.player.positions, [spreading_distance]).first, spreading_distance) if spreading_distance.length > 0
    return move(@board.closest_to(@board.player.positions, [jumping_distance]).first, jumping_distance) if jumping_distance.length > 0

    #merge randomly
    closest_enemy = @board.closest_to(@board.player.positions, @board.weakest_enemy.positions).first
    return move(@board.closest_to(@board.player.positions.select{|space| space != closest_enemy }, [closest_enemy]).first, closest_enemy)
  end

  def try_to_move
    spreading_distance = @board.empty_space_near(board.player.positions, 1)
    jumping_distance = @board.empty_space_near(board.player.positions, 2)

    return move(@board.closest_to(@board.player.positions, [spreading_distance]).first, spreading_distance) if spreading_distance.length > 0
    return move(@board.closest_to(@board.player.positions, [jumping_distance]).first, jumping_distance) if jumping_distance.length > 0
  end

  def move(start_block, end_block)
    STDOUT.write "#{start_block.x} #{start_block.y} #{end_block.x} #{end_block.y}"
    true
  end
end

slime_of_death = DeathSlime.new(ARGV[0])
slime_of_death.attack

1

Liken

Bu R ile yazılmış bir bot Rscript Lichen.R. Kullanılarak tetiklenmesi gerekiyor .

input <- strsplit(commandArgs(TRUE),split=",")[[1]]
me <- input[1]
arena <- do.call(rbind,strsplit(input[-1],""))
n <- sum(arena==me)
where <- which(arena==me,arr.ind=TRUE)
closest <- function(a,b){
    x <- abs(outer(a[,1],b[,1],`-`))
    y <- abs(outer(a[,2],b[,2],`-`))
    matrix(which(x<2&y<2,arr.ind=TRUE),ncol=2)
    }
if(n==0){ #No slime on the board
    out <- "0 0 0 0"
    }else if(n==1){ #One slime on the board
        x <- where[1]+c(1,-1)
        y <- where[2]+c(1,-1)
        out <- paste(where[1]-1,where[2]-1,x[x%in%2:(nrow(arena)-1)]-1,y[y%in%2:(nrow(arena)-1)]-1,sep=" ")
    }else{
        area <- apply(which(arena==me,arr.ind=TRUE),2,range,na.rm=TRUE)
        empty <- matrix(which(arena==".",arr.ind=TRUE),ncol=2)
        opponents <- c("1","2","3","4")[c("1","2","3","4")!=me]
        for(i in seq_along(opponents)){
            if(i==1){
                other <- which(arena==opponents[i],arr.ind=TRUE)
                }else{other <- rbind(other,which(arena==opponents[i],arr.ind=TRUE))}
            }
        fillable <- matrix(empty[empty[,1]%in%area[1,1]:area[2,1]&empty[,2]%in%area[1,2]:area[2,2],],ncol=2)
        enemies <- matrix(other[other[,1]%in%area[1,1]:area[2,1]&other[,2]%in%area[1,2]:area[2,2],],ncol=2)
        if(length(unique(where[,2]))==1 | length(unique(where[,2]))==1){ #Slimes form a line
            W <- closest(where,empty)
            if(nrow(W)){
                out <- paste(c(where[W[1,1],]-1,empty[W[1,2],]-1),collapse=" ")
            }else{out <- "0 0 0 0"}
        }else if(length(enemies)&length(fillable)){ #There are enemies and empty spaces in habitable area
            w <- closest(enemies, fillable)
            if(nrow(w)){
                X <- abs(where[,1]-fillable[w[1,2],1])
                Y <- abs(where[,2]-fillable[w[1,2],2])
                W <- which(X<2&Y<2)
                out <- paste(c(where[W[1],]-1,fillable[w[1,2],]-1),collapse=" ")
            }else{out <- "0 0 0 0"}
        }else if(length(fillable)){ #There are empty spaces in habitable area
            w <- closest(fillable,where)
            out <- paste(c(where[w[1,2],]-1,fillable[w[1,1],]-1),collapse=" ")
        }else{
            x <- area[!area[,1]%in%c(1,nrow(arena)),1]
            y <- area[!area[,2]%in%c(1,ncol(arena)),2]
            if(sum(arena[x+(-1:1),y+(-1:1)]==".")>1){
                w <- where[where[,1]%in%(x+c(1,-1))&where[,2]%in%(y+c(1,-1)),]
                out <- paste(w[1]-1,w[2]-1,x-1,y-1,sep=" ")
            }else{
                W <- closest(where, empty)
                if(nrow(W)){
                    out <- paste(c(where[W[1,1],]-1,empty[W[1,2],]-1),collapse=" ")
                }else{out <- "0 0 0 0"}
            }
        }
    }
cat(out)

Amaçlanan algoritma dikdörtgen bir alanı (boşluk kullanarak doldurma spread) kaplamaya çalışmasıdır . Dikdörtgen tamamlandığında, merges"yaşanabilir" alanı genişletmek için köşesinden birindeki (tahtanın köşesinden en uzak olanı) iki inceltilir, daha sonra yeni tanımlanan dikdörtgeni doldurun, vb jump.

.....   .....   .....   .....   .....   ..333
.....   .333.   3333.   3333.   3333.   33333
333..   3333.   3333.   3333.   3333.   33.33
333..   3.33.   3.33.   3333.   3333.   3333.
333..   333..   333..   333..   3333.   3333.

Bir düşman yaşanabilir bölgede bulunuyorsa ve bölgede de boş bir alan varsa, yanındaki boş alanı doldurur. Yaşanabilir alanı genişletirken birleştirilmesi gereken sümük düşmanlarla çevriliyse, spreadbunun yerine bir sümük birleşecektir.


Bunun için bir sürü hata alıyorum ( stacktrace için sohbete bakın ).
Kapı Tokmağı

Bot artık 0 0 0 0gemide hiç balçık kalmadığında gönder .
plannapus

0

CornerSlime

Bu balçık köşeleri bir kavram var, ya da en azından C # yazdığımda, artık gerçekten emin değilim.

C ++ ile yazılmış, muhtemelen gcc ile iyi ve hiçbir argüman yanında derlemek olacaktır; umarım kazayla MSVC'ye özgü bir şey kullanmadım.

Modifiye bir sunucu (sadece nerede olduğum fantezi yeni C ++ derleyici) kendisine karşı özel olarak test bu yüzden nasıl performans hakkında hiçbir fikrim yok, umarım çok yavaş olduğu için diskalifiye olmayacak. Şu anda bu botta rastgelelik yok, ancak daha sonraki bir tarihte bazılarını ekleyebilirim.

Bu, C ++ 'ı gerçekten bilmeyen ve korkunç olan biri tarafından C ++' a (hız endişeleri nedeniyle) taşındı. Daha sonra etrafındaki hücreler hakkında her türlü yararsız bilgi ile doldurulan bir dizi Hücre oluşturarak başlar (hücrelerimin sayısı, inceltiğimlerin sayısı, bu tür şeyler). Daha sonra bu bilgileri, bu bilgileri oluşturmak için kullandığı bilgilere daha yakından bakmaya ihtiyacı olup olmadığına karar vermek için kullanır ve daha sonra söz konusu bilgileri anlamlı bir çıktı üretmek için potansiyel olarak kullanır.

#include <iostream>

#define min(a,b) a>b?b:a;
#define max(a,b) a>b?a:b;

#define null 0 // fun times

struct Cell
{
public:
    int t;
    int x, y;
    int counts1[5];
    int counts2[5];
    int ecount1;
    int ecount2;
    bool safe1;
    bool safe2;

    bool canspread;
    bool canjump;
    bool canmerge;

    bool spreadable;
    bool jumpable;
    bool mergeable;

    Cell()
    {
        for (int i = 0; i < 5; i++)
        {
            counts2[i]=counts1[i]=0;
        }
        ecount1=ecount2=0;
        safe1=safe2=mergeable=jumpable=spreadable=canmerge=canjump=canspread=false;
    }

    Cell(int tN, int xN, int yN) // not sure why I can't call () constructor here
    {
        for (int i = 0; i < 5; i++)
        {
            counts2[i]=counts1[i]=0;
        }
        ecount1=ecount2=0;
        safe1=safe2=mergeable=jumpable=spreadable=canmerge=canjump=canspread=false;

        t = tN;
        x = xN;
        y = yN;
    }

    void findOptions(int moi)
    {
        if (t == 0)
        {
            if (counts1[moi] > 0)
                spreadable = true;
            if (counts2[moi] > 0)
                jumpable = true;
        }
        else if (t == moi)
        {
            if (counts1[moi] > 0)
                mergeable = canmerge = true;
            if (counts1[0] > 0)
                canspread = true;
            if (counts2[0] > 0)
                canjump = true;
        }
    }
};

const int dim = 8;
const int hdim = 4;

int moi;
int chezMoi;

int target;
int chezTarget;

Cell cells[dim][dim];

int cornerCounts[4][5];
int totalCounts[5];

// ring ness - why why why

// end ring ness

int tlx;
int tly;
int thx;
int thy;

int alx;
int aly;
int ahx;
int ahy;

int rj;
int rstate;

void ring(int x, int y, int dist)
{   
    tlx=x-dist;
    tly=y-dist;
    thx=x+dist;
    thy=y+dist;

    alx=max(0, tlx);
    aly=max(0, tly);
    ahx=min(dim-1, thx);
    ahy=min(dim-1, thy);

    rstate = 0;
}

bool nextR(Cell** outc)
{
    if (rstate == 1)
    {
        goto state1;
    }
    if (rstate == 2)
    {
        goto state2;
    }
    if (rstate == 3)
    {
        goto state3;
    }
    if (rstate == 4)
    {
        goto state4;
    }

    if (alx == tlx)
    {
        rj = aly - 1;
        rstate = 1;
    }
state1:
    if (alx == tlx)
    {
        if (++rj <= ahy)
        {
            *outc = (cells[alx]+rj);
            return true;
        }
        alx++;
    }

    if (ahx == thx)
    {
        rj = aly - 1;
        rstate = 2;
    }
state2:
    if (ahx == thx)
    {
        if (++rj <= ahy)
        {
            *outc = (cells[ahx]+rj);
            return true;
        }
        ahx--;
    }

    if (aly == tly)
    {
        rj = alx - 1;
        rstate = 3;
    }
state3:
    if (aly == tly)
    {
        if (++rj <= ahx)
        {
            *outc = (cells[rj]+aly);
            return true;
        }
    }

    if (ahy == thy)
    {
        rj = alx - 1;
        rstate = 4;
    }
state4:
    if (ahy == thy)
    {
        if (++rj <= ahx)
        {
            *outc = (cells[rj]+ahy);
            return true;
        }
    }

    return null;
}

int cox;
int coy;

int ci;
int cj;

void corner(int idx)
{
    cox = (idx / 2) * hdim;
    coy = (idx % 2) * hdim;

    ci = 0;
    cj = -1;
}

bool nextC(Cell** outc)
{
    for (;ci < hdim;ci++)
    {
        for (;++cj < hdim;)
        {
            *outc = (cells[ci+cox]+cj+coy);
            return true;
        }
        cj = -1;
    }

    return false;
}

void cornerCount(int idx, int* c)
{
    int ox = (idx / 2) * hdim;
    int oy = (idx % 2) * hdim;

    for (int i = 0; i < hdim; i++)
    {
        for (int j = 0; j < hdim; j++)
        {
            c[cells[i+ox][j+oy].t]++;
        }
    }
}

void ringCount(int x, int y, int dist, int* c)
{
    int tlx=x-dist;
    int tly=y-dist;
    int thx=x+dist;
    int thy=y+dist;

    int alx=max(0, tlx);
    int aly=max(0, tly);
    int ahx=min(dim-1, thx);
    int ahy=min(dim-1, thy);

    if (alx == tlx)
    {
        for (int j = aly; j <= ahy; j++)
            c[cells[alx][j].t]++;
        alx++;
    }
    if (ahx == thx)
    {
        for (int j = aly; j <= ahy; j++)
            c[cells[ahx][j].t]++;
        ahx--;
    }
    if (aly == tly)
    {
        for (int i = alx; i <= ahx; i++)
            c[cells[i][aly].t]++;
    }
    if (ahy == thy)
    {
        for (int i = alx; i <= ahx; i++)
            c[cells[i][ahy].t]++;
    }
}

int trans(char c)
{
    return c<48?0:c-48;
}

std::string res(Cell* ca, Cell* cb)
{
    char buff[100]; // shhh
    sprintf_s(buff, "%d %d %d %d\n", ca->x, ca->y, cb->x, cb->y);
    return std::string(buff);
}

std::string go(char* inp)
{
    moi = trans(inp[0]);

    int a = 2;

    for (int i = 0; i < dim; i++)
    {
        for (int j = 0; j < dim; j++)
        {
            cells[i][j] = Cell(trans(inp[a]), i, j);
            a++;
        }
        a++;
    }

    // count corners and totals
    for (int i = 0; i < 4; i++)
    {
        cornerCount(i, cornerCounts[i]);
        for (int j = 0; j < 5; j++)
        {
            totalCounts[j] += cornerCounts[i][j];
        }
    }

    // count and find cell options
    for (int i = 0; i < dim; i++)
    {
        for (int j = 0; j < dim; j++)
        {
            Cell* c = cells[i]+j;

            ringCount(i, j, 1, c->counts1);
            ringCount(i, j, 2, c->counts2);

            // safeness
            for (int r = 1; r < 5; r++)
            {
                if (r != moi)
                {
                    c->ecount1 += c->counts1[r];
                    c->ecount2 += c->counts2[r];
                }
            }
            c->safe1 = c->ecount1 == 0 && c->counts1[0] == 0; // surrounded by moi
            c->safe2 = c->ecount1 == 0 && c->ecount2 == 0; // no enemies in sight

            // that funcion which does stuff
            c->findOptions(moi);
        }
    }

    // find chezMoi
    chezMoi = moi-1; // might work, can't be bothered to work it out
    for (int i = 1; i < 4; i++)
    {
        if (cornerCounts[i][moi] > cornerCounts[chezMoi][moi])
            chezMoi = i;
    }

    int best = 0;

    if (cornerCounts[chezMoi][moi] < hdim * hdim)
    {
        // fill our corner
        best = 0;
        Cell* ac = null;
        Cell* bc = null;

        corner(chezMoi);
        Cell* c;
        while (nextC(&c))
        {
            if (c->spreadable && c->ecount1 + 1 > best)
            {
                ring(c->x, c->y, 1);
                Cell* oc;
                while (nextR(&oc))
                {
                    if (oc->canspread)
                    {
                        best = c->ecount1 + 1;
                        ac = oc;
                        bc = c;
                        break;
                    }
                }
            }
            if (c->mergeable && c->counts1[0] - 1 > best)
            {
                ring(c->x, c->y, 1);
                Cell* oc;
                while (nextR(&oc))
                {
                    if (oc->safe2 && oc->canmerge && c->counts1[0] > 0)
                    {
                        best = c->counts1[0] - 1;
                        ac = oc;
                        bc = c;
                        break;
                    }
                }
            }
        }

        if (bc != null)
        {
            return res(ac, bc);
        }
    }

    // pick target (why?)
    target = -1;
    best = 0;
    for (int i = 0; i < 4; i++)
    {
        if (i == moi)
            continue;
        int cur = totalCounts[i];
        if (target == -1 || cur > best)
        {
            target = i;
            best = cur; 
        }
    }

    if (target != -1)
    {
        for (int i = 0; i < 4; i++)
        {
            if (i == chezMoi)
                continue;
            int cur = cornerCounts[i][target];
            if (chezTarget == -1 || cur > best)
            {
                chezTarget = i;
                best = cur;
            }
        }

        // attack chosen target (not sure it does this anymore...)
        best = 0;
        Cell* ac = null;
        Cell* bc = null;

        for (int i = 0; i < dim; i++)
        {
            for (int j = 0; j < dim; j++)
            {
                Cell* c = cells[i]+j;

                if (c->spreadable && c->ecount1 + 1 > best)
                {
                    ring(c->x, c->y, 1);
                    Cell* oc;
                    while (nextR(&oc))
                    {
                        if (oc->canspread)
                        {
                            best = c->ecount1 + 1;
                            ac = oc;
                            bc = c;
                            break;
                        }
                    }
                }
                if (c->jumpable && c->ecount1 - 1 > best)
                {
                    ring(c->x, c->y, 2);
                    Cell* oc;
                    while (nextR(&oc))
                    {
                        if (oc->safe2 && oc->canjump)
                        {
                            best = c->ecount1 - 1;
                            ac = oc;
                            bc = c;
                            break;
                        }
                    }
                }
            }
        }

        if (bc != null)
        {
            return res(ac, bc);
        }
    }

    return "0 0 0 0\n";
}

int main(int argc, char* args[])
{
    printf(go(args[1]).c_str());
    return 0;
}
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.