Eve giderken bir sarhoş nasıl yavaşlatılır


15

Şuna benzer bir kare n x n ızgara grafiği düşünün.

ızgara grafiği

Bu grafiğin 11'e 11 olduğunu fark etmek önemlidir .

Herhangi bir noktada bir adam bir kavşakta durur ve bir sonraki kavşağa her seferinde sadece bir adım dikey veya yatay olarak hareket eder. Ne yazık ki biraz fazla sarhoş oldu, bu yüzden rastgele hareket ettiği yönü 4 yöne kadar (yukarı, aşağı, sol, sağ) seçti. Bu bir duvarda duruyormuş gibi 4'e kadar elbette sadece 3 seçeneği var ve bir köşede sadece 2 tane var.

Sol alt köşeden başlar ve hedefi sağ üst köşedeki eve ulaşmaktır. Zaman sadece onu attığı adımların sayısıdır.

Ancak, olabildiğince yavaş eve gitmesini isteyen kötü niyetli bir düşmansınız. Yürüme sırasında istediğiniz zaman grafikten istediğiniz sayıda kenarı silebilirsiniz . Tek kısıtlama, eve gelmesi için her zaman bir yol bırakmanız ve zaten kullandığı bir kenarı silemezsiniz.

Zorluk, mümkün olduğunca kötü niyetli bir düşmanı tasarlamak ve ardından rastgele sarhoş bir yürüteç ile 100 x 100 20 x 20 grafik üzerinde test etmektir . Puanınız sadece rastgele yürüteç eve gitmek için ortalama süredir 10 1000 koşu .

Linux'ta serbestçe kullanılabilir ve kolayca kurulabildikleri sürece, istediğiniz dil ve kitaplıkları kullanabilirsiniz.

Uygulamak için neye ihtiyacım var?

Rastgele yürüteç için ve aynı zamanda düşman için kod uygulamalısınız ve kod birleştirildiğinde, çalıştırıldığında çıktı sadece rakip kodunuzu kullanarak ortalama 1000 çalıştırma olacak şekilde birleştirilmelidir. Rastgele yürüteç kodunun yazılması çok basit olmalıdır, çünkü (x-1, y), (x + 1, y), (x, y-1) ve (x, y + 1) arasından seçim yaptığından emin olun. bunların hiçbiri silinmedi veya aralık dışında.

Muhalif kod elbette daha zordur ve ayrıca sarhoşun hangi kenarlardan geçtiğini hatırlaması gerekir, böylece bunlardan herhangi birini silmeye çalışmaz ve sarhoş için hala bir yol olduğundan emin olun, ki bu biraz daha zor hızlı bir şekilde yapmak.


Zeyilname 10 koşular gerçekten yeterli değil ama gerçekten uzun yürüyüşler yapmayı başarmış insanları cezalandırmak istemedim. Şimdi popüler istek nedeniyle 1000'e çıkardım. Ancak, yürüyüşünüz çok uzunsa, gerçekçi bir sürede 1000 koşu yapamazsınız, lütfen yapabileceğiniz maksimum koşu sayısını rapor edin.


100'den 100'e kadar yüksek puan tablosu.

  • 976124.754 Optimizer tarafından.
  • 103000363.218, Peter Taylor.

Düzenle 1. İnsanların testlerinin çalışma süresine yardımcı olmak için grafik boyutunu 20 x 20 olarak değiştirdi. İnsanlar puanları gönderdikçe, bu boyut için yeni bir yüksek masa puanı yapacağım.

20'den 20'ye kadar yüksek puan tablosu.

230,794.38 (100k runs) by justhalf
227,934 by Sparr 
213,000 (approx) by Peter Taylor
199,094.3 by stokastic
188,000 (approx) by James_pic
 64,281 by Geobits

2
Anlamıyorum; en uzun yolu oluşturanlar hariç başlangıçtaki tüm kenarları silemez misiniz?
Peter Olson

3
Sarhoşun aynı kenarı iki kez tekrar yürüyemeyeceğini gösteren hiçbir kural görmüyorum. İki nokta arasında aynı yolu iki kez alabilir ve rastgele dönüşleri seçerse, mantıksal olarak en uzun ortalama (rastgele) en fazla kenarı olan çapraz geçişli grafik değil mi? Yani, en uygun (en uzun) grafik silinmiş kenarları olmayan grafik olmaz mı?
millinon

3
Tekerleği (yürüteç) yeniden icat etmek için her girişi gerektiren bir hayran değilim. Birisi bir test koşum takımı / çerçevesi gönderirse, onları onaylayıp kullanacağım.
Sparr

1
Uzun yoldan geri dönmesi için yolun bir kısmını kaldırmanın avantajı, yolu rastgele olduğunda tamamen kaybolur; varsayılan olarak, bir kenarı çıkarmanıza gerek kalmadan bir noktada geri dönmesi de eşit derecede olasıdır. Kenarları kaldırılmadan ortalama süreyi gösteren bazı test verilerini görmek ve daha sonra önerdiğiniz gibi belirli kenarlar kaldırılmış olarak görmek istiyorum. Bu meydan okumaya gelince, bence sarhoşun yolu belirleyici olsaydı çok daha ilginç olurdu.
millinon

3
10 mermi neredeyse yeterli değil. Akıllı bir düşman ve 100x100 labirent dışında, statik 10x10 labirentte bile, standart sapma ortalama vakanın yaklaşık% 50'sidir. 10000 mermi yapıyorum ve sonuçları karşılaştırmaya layık görmüyorum.
Sparr

Yanıtlar:


10

20x20, 100k koşularda 230.794,38

Son Güncelleme: Sonunda mükemmel dinamik 2 yollu çözüm geliştirdim. Önceki versiyonun aslında simetrik olmadığı için mükemmel dedim, ayyaş bir yoldan diğerine geçerse daha uzun yol almak daha kolaydı. Mevcut olan simetriktir, bu nedenle beklenen sayıda adım alabilir. Birkaç denemeden sonra, 230k civarında, bir öncekine göre yaklaşık 228k'lık bir gelişme gibi görünüyor. Ancak istatistiksel olarak bu rakamlar hala büyük sapmaları içinde, bu yüzden bunun önemli ölçüde daha iyi olduğunu iddia etmiyorum, ancak bunun önceki versiyondan daha iyi olması gerektiğine inanıyorum.

Kod bu yazının altındadır. Bir önceki versiyondan çok daha hızlı olacak şekilde güncellenir ve 23'lerde 1000 çalışmayı tamamlar.

Aşağıda örnek çalışma ve örnek labirent verilmiştir:

Mükemmel Yürüteç
Ortalama: 230794.384
Maksimum: 1514506
Min: 25860
Tamamlandı 2317.374s
 _ _ _ _ _ _ _ _ _ _ _ _ _. 
| | | | | | | | | | | | | | | _ _ _ _  
| | | | | | | | | | | | | | | | _ _ _ _  
| | | | | | | | | | | | | | | _ _ _ _ |
| | | | | | | | | | | | | | | | _ _ _ _  
| | | | | | | | | | | | | | | _ _ _ _ |
| | | | | | | | | | | | | | | | _ _ _ _  
| | | | | | | | | | | | | | | _ _ _ _ |
| | | | | | | | | | | | | | _ | | _ _ _ _  
| | | | | | | | | | | | | _ _ _ _ _ _ |
| | | | | | | | | | | | | | _ _ _ _ _ _  
| | | | | | | | | | | | | _ _ _ _ _ _ |
| | | | | | | | | | | | | | _ _ _ _ _ _  
| | | | | | | | | | | | | _ _ _ _ _ _ |
| | | | | | _ | | _ | | _ | | _ | | _ _ _ _ _ _  
| | | | | _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| | | | | | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
| | | | | _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| | _ | | _ | | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | 


Önceki gönderimler

Sonunda Sparr'ın sonucunu eşleştirebilirim! = D

Önceki deneylerime dayanarak (bu yazının altına bakın), en iyi strateji, sarhoş bunlardan herhangi birine ulaştığında çift yollu ve bir tane kapatmaktır ve değişken, sarhoşun nereye gideceğini dinamik olarak tahmin edebileceğimizden gelir. daha uzun bir yola girme şansını arttırır.

Bu yüzden DOUBLE_PATHstratejime dayanarak DOUBLE_PATH, sarhoş hareketine bağlı olarak labirenti değiştiren ( labirentim kolayca değiştirilebilir) başka bir tane inşa ettim . Birden fazla mevcut seçeneğe sahip bir yol alırken, sadece iki olası seçeneği (biri geldiği, diğeri izlenmemiş) bırakacak şekilde yolları kapatacağım.

Sonuçta görüldüğü gibi, bu Sparr'ın başardığı şeye benziyor. Onunla olan fark daha iyi düşünülemeyecek kadar küçük, ama labirentim Sparr's = 'den daha değiştirilebilir olduğu için yaklaşımımın ondan daha dinamik olduğunu söyleyebilirim.

Örnek bir son labirent ile sonuç:

EXTREME_DOUBLE_PATH
Ortalama: 228034.89
Maksimum: 1050816
Min: 34170
Tamamlandı 396.728s
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
 _ _ _ _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
 _ _ _ _ _ | | _ _ _ _ _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |


Deney Bölümü

En iyisi stokastic ile aynı strateji olduğu ortaya çıkıyor, çeşitli stratejiler kullanarak denemeler yapmak ve güzel çıktılar basmaktan gurur duyuyorum :)

Aşağıdaki basılı labirentlerin her biri, sarhoş eve ulaştıktan sonraki son labirenttir , bu nedenle sarhoş hareketindeki rastgelelik ve rakiplerin dinamizmi nedeniyle koşmaktan biraz farklı olabilirler.

Her stratejiyi açıklayacağım:

Tek Yol

Bu, girişten çıkışa tek bir yol oluşturacak en basit yaklaşımdır.

SINGLE_PATH
Ortalama: 162621.612
Maksimum: 956694
Min: 14838
Tamamlandı 149.430s
 _ _ _ _ _ _ _ _ _ _ _
| | _ | | _ | | _ | | _ | | _ | | _ | | _ | | _ | | _ | |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |

Ada (seviye 0)

Bu, neredeyse izole bir adada sarhoşu yakalamaya çalışan bir yaklaşımdır. Beklediğim kadar iyi çalışmıyor, ancak bu benim ilk fikirlerimden biri, bu yüzden dahil ediyorum.

Çıkışa giden iki yol var ve ayyaş bunlardan birine yaklaştığında, rakip onu kapatıyor ve onu diğer çıkışı bulmaya zorluyor (ve muhtemelen adada tekrar tuzağa düşüyor)

ADASI
Ortalama: 74626.070
Maksimum: 428560
Min: 1528
Tamamlandı 122.512s
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _   
| | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |
| | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |
| | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |
| | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |
| | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |
| | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |
| | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |
| | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |
| | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |
| | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |
| | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |
| | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |
| | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |
| | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |
| | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |
| | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |
| _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |

Çift Yol

Bu, en çok tartışılan stratejidir, bu da çıkışa iki eşit uzunluktaki yola sahip olmak ve bunlardan birini, sarhoş bunlardan birine yaklaştıkça kapatmaktır.

DOUBLE_PATH
Ortalama: 197743.472
Maksimum: 1443406
Min: 21516
Tamamlandı 308.177s
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
 _ _ _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
 _ _ _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
 _ _ _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
 _ _ _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
 _ _ _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
 _ _ _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
 _ _ _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
 _ _ _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
 _ _ _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |

Ada (seviye 1)

Adanın birden çok yolundan ve tek yoldaki yüksek yürüyüş sayısından esinlenerek, adayı çıkışa bağlarız ve adada tek yol labirenti yaparız, çıkmak için toplam üç yol yaratırız ve önceki duruma benzer şekilde, ayyaş yaklaştıkça çık.

Bu saf tek yoldan biraz daha iyi çalışır, ancak yine de çift yolu yenmez.

ADASI
Ortalama: 166265.132
Maksimum: 1162966
Min: 19544
Tamamlandı 471.982s
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ | _
| | | _ | | _ | | _ | | _ | | _ | | _ | | _ | | _ | |  
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| _ | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |

Ada (seviye 2)

Önceki fikri genişletmeye çalışarak, toplam beş yol oluşturarak iç içe bir ada yarattım, ancak bu işe yaramadı.

ADASI
Ortalama: 164222.712
Maksimum: 927608
Min: 22024
Tamamlandı 793.591s
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | _
| | _ _ _ _ _ _ _ _ | _ |  
| | | | _ | | _ | | _ | | _ | | _ | | _ | | _ | | |
| | | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | | |
| | | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | | |
| | | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | | |
| | | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | | |
| | | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | | |
| | | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | | |
| | | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | | |
| _ | _ | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |

Ada (seviye 3)

Çift yolun aslında tek yoldan daha iyi çalıştığını fark ederek, adayı çift yol haline getirelim!

Sonuç Ada üzerinde bir gelişme (seviye 1), ama yine de saf çift yolu yenmez.

Karşılaştırma için, adanın büyüklüğünün çift yolunun sonucu ortalama 131.134,42 harekettir. Bu, oldukça önemli sayıda hareket (yaklaşık 40k) ekler, ancak çift yolu yenmek için yeterli değildir.

ADASI
Ortalama: 171730.090
Maksimum: 769080
Min: 29760
Tamamlandı 587.646s
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | _
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |  
| _ _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ _ |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| _ _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ _ |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| _ _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ _ |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| _ _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ _ |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| _ _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ _ |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| _ _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ _ |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| _ _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ _ |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| _ _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ _ |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| _ | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |

Ada (seviye 4)

Yine, iç içe ada ile deneyler ve yine o kadar iyi çalışmıyor.

ADASI
Ortalama: 149723.068
Max: 622106
Min: 25752
Tamamlandı 830.889s
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | _ |
| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | _ |  
| | | _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| | _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ | |
| | | _ _ _ _ _ _ _ _ _ _ _ _ _ _ | | |
| | _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ | |
| | | _ _ _ _ _ _ _ _ _ _ _ _ _ _ | | |
| | _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ | |
| | | _ _ _ _ _ _ _ _ _ _ _ _ _ _ | | |
| | _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ | |
| | | _ _ _ _ _ _ _ _ _ _ _ _ _ _ | | |
| | _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ | |
| | | _ _ _ _ _ _ _ _ _ _ _ _ _ _ | | |
| | _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ | |
| | | _ _ _ _ _ _ _ _ _ _ _ _ _ _ | | |
| | _ _ _ _ _ _ _ | | _ _ _ _ _ _ _ | |
| | _ | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | | |
| _ | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |

Sonuç

Sonuçta, bu, sarhoş akım konumundan çıkışa kadar tek bir uzun yolun en iyi şekilde çalıştığını kanıtlıyor, bu da çift yol stratejisi ile elde ediliyor, çünkü bir çıkışı kapattıktan sonra, sarhoşun ulaşmak için mümkün olan maksimum mesafeyi kat etmesi gerekecek. çıkış.

Bu, temel stratejinin hala çift yol olması gerektiğine işaret ediyor ve sadece Sparr tarafından yapılan yolların ne kadar dinamik oluşturulduğunu değiştirebiliyoruz. Bu yüzden stratejisinin ilerlemenin yolu olduğuna inanıyorum!

kod

import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
import java.util.TreeSet;

public class Walker {

    enum Strategy{
        SINGLE_PATH,
        ISLAND,
        DOUBLE_PATH,
        EXTREME_DOUBLE_PATH,
        PERFECT_DOUBLE_PATH,
    }

    int width,height;
    int x,y; //walker's position
    int dX,dY; //destination
    Point[][] points;
    int stepCount = 0;

    public static void main(String[]args){
        int side = 20;
//      runOnce(side, Strategy.EXTREME_DOUBLE_PATH, 0);
        runOnce(side, Strategy.PERFECT_DOUBLE_PATH, 0);
//      for(Strategy strategy: Strategy.values()){
//          runOnce(side, strategy, 0);
//      }
//      runOnce(side, Strategy.ISLAND, 1);
//      runOnce(side, Strategy.ISLAND, 2);
//      Scanner scanner = new Scanner(System.in);
//      System.out.println("Enter side, strategy (SINGLE_PATH, ISLAND, DOUBLE_PATH, EXTREME_DOUBLE_PATH), and level:");
//      while(scanner.hasNext()){
//          side = scanner.nextInt();
//          Strategy strategy = Strategy.valueOf(scanner.next());
//          int level = scanner.nextInt();
//          scanner.nextLine();
//          runOnce(side, strategy, level);
//          System.out.println("Enter side, strategy (SINGLE_PATH, ISLAND, DOUBLE_PATH, EXTREME_DOUBLE_PATH), and level:");
//      }
//      scanner.close();
    }

    private static Walker runOnce(int side, Strategy strategy, int level) {
        Walker walker = null;
        long total = 0;
        int max = 0;
        int min = Integer.MAX_VALUE;
        double count = 1000;
        long start = System.currentTimeMillis();
        for(int i=0; i<count; i++){
            walker = new Walker(0,0,side,side,side-1,side-1, strategy, level, false);
            total += walker.stepCount;
            max = Math.max(walker.stepCount, max);
            min = Math.min(walker.stepCount, min);
//          System.out.println("Iteration "+i+": "+walker.stepCount);
        }
        System.out.printf("%s\nAverage: %.3f\nMax: %d\nMin:%d\n",strategy, total/count, max, min);
        System.out.printf("Completed in %.3fs\n", (System.currentTimeMillis()-start)/1000.0);
        walker.printPath();
        return walker;
    }

    private void createIsland(int botLeftX, int botLeftY, int topRightX, int topRightY){
        for(int i=botLeftY+1; i<topRightY; i++){
            if(i>botLeftY+1) deletePath(points[botLeftX][i].right());
            if(i<topRightY-1) deletePath(points[topRightX][i].left());
        }
        for(int i=botLeftX+1; i<topRightX; i++){
            if(i>botLeftX+1) deletePath(points[i][botLeftY].up());
            if(i<topRightX-1) deletePath(points[i][topRightY].down());
        }
    }

    private void createSinglePath(int botLeftX, int botLeftY, int topRightX, int topRightY){
        for(int i=botLeftY; i<topRightY; i++){
            if(i==topRightY-1 && (topRightY+1-botLeftY)%2==0){
                for(int j=botLeftX; j<topRightX; j++){
                    if(j==topRightX-1 && (j-botLeftX)%2==0){
                        deletePath(points[topRightX][topRightY].down());
                    } else {
                        deletePath(points[j][topRightY-1+((j-botLeftX)%2)].right());
                    }
                }
            } else {
                for(int j=botLeftX+(i-botLeftY)%2; j<topRightX+((i-botLeftY)%2); j++){
                    deletePath(points[j][i].up());
                }
            }
        }
    }

    private void createDoublePath(int botLeftX, int botLeftY, int topRightX, int topRightY){
        for(int i=botLeftY; i<topRightY; i++){
            if(i>botLeftY && (width%4!=1 || i<topRightY-1)) deletePath(points[width/2-1][i].right());
            if(i==topRightY-1 && (topRightY+1-botLeftY)%2==1){
                for(int j=botLeftX; j<topRightX; j++){
                    if((j-botLeftX)%2==0 || j<topRightX-1){
                        deletePath(points[j][topRightY-1+((j-botLeftX)%2)].right());
                    } else {
                        deletePath(points[topRightX-1][topRightY-1].right());
                    }
                }
            } else {
                if((i-botLeftY)%2==0){
                    for(int j=botLeftX+1; j<topRightX; j++){
                        deletePath(points[j][i].up());
                    }
                } else {
                    for(int j=botLeftX; j<topRightX+1; j++){
                        if(j!=width/2 && j!=width/2-1){
                            deletePath(points[j][i].up());
                        }
                    }
                }
            }
        }
    }

    public Walker(int startingX,int startingY, int Width, int Height, int destinationX, int destinationY, Strategy strategy, int level, boolean animate){
        width = Width;
        height = Height;
        dX = destinationX;
        dY = destinationY;
        x=startingX;
        y=startingY;
        points = new Point[width][height];
        for(int y=0; y<height; y++){
            for(int x=0; x<width; x++){
                points[x][y] = new Point(x,y);
            }
        }
        for(int y=0; y<height; y++){
            for(int x=0; x<width; x++){
                if(x<width-1) new Edge(points[x][y], points[x+1][y]);
                if(y<height-1) new Edge(points[x][y], points[x][y+1]);
            }
        }

        if(strategy == Strategy.SINGLE_PATH) createSinglePath(0,0,width-1,height-1);

        if(strategy == Strategy.DOUBLE_PATH) createDoublePath(0,0,width-1,height-1);

        List<EdgeList> edgeLists = new ArrayList<EdgeList>();
        if(strategy == Strategy.ISLAND){
            List<Edge> edges = new ArrayList<Edge>();
            if(level==0){
                createIsland(0,0,width-1,height-1);
                deletePath(points[width-2][height-2].right());
                deletePath(points[width-2][height-2].up());
            } else {
                for(int i=0; i<level; i++){
                    createIsland(i,i,width-1-i, height-1-i);
                }
                createDoublePath(level,level,width-1-level,height-1-level);
                for(int i=height-1; i>=height-level; i--){
                    edges.add(points[i-2][i].right());
                    edges.add(points[i][i-2].up());
                    edgeLists.add(new EdgeList(points[i-1][i].right(), points[i][i-1].up()));
                }
            }
            edges.add(points[width-1-level][height-1-level].down());
            edges.add(points[width-1-level][height-1-level].left());
            edgeLists.add(new EdgeList(edges.toArray(new Edge[0])));
        }

        int[] availableVerticals = new int[height];
        if(strategy == Strategy.EXTREME_DOUBLE_PATH){
            for(int i=1; i<width-1; i++){
                deletePath(points[i][0].up());
            }
            availableVerticals[0] = 2;
            for(int i=1; i<height; i++){
                availableVerticals[i] = width;
            }
        }

        boolean[][] available = new boolean[width][height];
        if(strategy == Strategy.PERFECT_DOUBLE_PATH){
            for(int x=0; x<width; x++){
                for(int y=0; y<height; y++){
                    if(x%2==1 && y%2==1){
                        available[x][y] = true;
                    } else {
                        available[x][y] = false;
                    }
                }
            }
        }
//      printPath();
        while(!walk()){
            if(animate)try{Thread.sleep(500);}catch(InterruptedException e){}
            if(strategy == Strategy.ISLAND){
                if(x==y && (x==1 || (x>=2 && x<=level))){
                    if(!hasBeenWalked(points[x][x].down())){
                        deletePath(points[x][x].down());
                    } else if(!hasBeenWalked(points[x][x].left())){
                        deletePath(points[x][x].left());
                    }
                }
            }
            if(strategy == Strategy.EXTREME_DOUBLE_PATH){
                Point cur = points[x][y];
                int untravelled = 0;
                for(Edge edge: cur.edges) if(edge!=null && !edge.walked) untravelled++;
                if(untravelled>1){
                    if(cur.up()!=null && availableVerticals[y]>2 && !cur.up().walked){
                        deletePath(cur.up());
                        availableVerticals[y]--;
                    }
                    if(cur.down()!=null && !cur.down().walked){
                        deletePath(cur.down());
                        availableVerticals[y-1]--;
                    }
                    if(cur.up()!=null && cur.left()!=null && !cur.left().walked){
                        deletePath(cur.left());
                        deletePath(points[x][y+1].left());
                    }
                    if(cur.up()!=null && cur.right()!=null && !cur.right().walked){
                        deletePath(cur.right());
                        if(y<height-1) deletePath(points[x][y+1].right());
                    }
                }
            }
            if(strategy == Strategy.PERFECT_DOUBLE_PATH){
                Point cur = points[x][y];
                int untravelled = 0;
                for(Edge edge: cur.edges) if(edge!=null && !edge.walked) untravelled++;
                if(x%2!=1 || y%2!=1){
                    if(untravelled>1){
                        if(cur.down()==null && hasBeenWalked(cur.right())){
                            if(canBeDeleted(cur.up())) deletePath(cur.up());
                        }
                        if(cur.down()==null && hasBeenWalked(cur.left())){
                            if(x%2==0 && y%2==1 && canBeDeleted(cur.right())) deletePath(cur.right());
                            else if(cur.right()!=null && canBeDeleted(cur.up())) deletePath(cur.up());
                        }
                        if(cur.left()==null && hasBeenWalked(cur.up())){
                            if(canBeDeleted(cur.right())) deletePath(cur.right());
                        }
                        if(cur.left()==null && hasBeenWalked(cur.down())){
                            if(x%2==1 && y%2==0 && canBeDeleted(cur.up())) deletePath(cur.up());
                            else if (cur.up()!=null && canBeDeleted(cur.right())) deletePath(cur.right());
                        }
                    }
                } else {
                    if(!hasBeenWalked(cur.left())){
                        if(x>1 && available[x-2][y]){
                            if(untravelled>1){
                                available[x-2][y] = false;
                                deletePath(cur.up());
                            }
                        } else if(cur.up()!=null){
                            if(canBeDeleted(cur.left())) deletePath(cur.left());
                            if(canBeDeleted(points[x][y+1].left())) deletePath(points[x][y+1].left());
                        }
                    }
                    if(!hasBeenWalked(cur.down())){
                        if(y>1 && available[x][y-2]){
                            if(untravelled>1){
                                available[x][y-2] = false;
                                deletePath(cur.right());
                            }
                        } else if(cur.right()!=null){
                            if(canBeDeleted(cur.down())) deletePath(cur.down());
                            if(canBeDeleted(points[x+1][y].down())) deletePath(points[x+1][y].down());
                        }
                    }
                }
            }
            if(strategy == Strategy.DOUBLE_PATH || strategy == Strategy.EXTREME_DOUBLE_PATH
                    || strategy == Strategy.PERFECT_DOUBLE_PATH){
                if(x==width-2 && y==height-1 && points[width-1][height-1].down()!=null){
                    deletePath(points[width-1][height-1].left());
                }
                if(x==width-1 && y==height-2 && points[width-1][height-1].left()!=null){
                    deletePath(points[width-1][height-1].down());
                }
            } else if(strategy == Strategy.ISLAND){
                for(EdgeList edgeList: edgeLists){
                    boolean deleted = false;
                    for(Edge edge: edgeList.edges){
                        if(edge.start.x == x && edge.start.y == y){
                            if(!hasBeenWalked(edge)){
                                deletePath(edge);
                                edgeList.edges.remove(edge);
                                if(edgeList.edges.size() == 1){
                                    edgeLists.remove(edgeList);
                                }
                                deleted = true;
                                break;
                            }
                        }
                    }
                    if(deleted) break;
                }
            }
            if(animate)printPath();
        }
    }

    public boolean hasBeenWalked(Edge edge){
        if(edge == null) return false;
        return edge.walked;
    }

    public boolean canBeDeleted(Edge edge){
        if(edge == null) return false;
        return !edge.walked;
    }

    public List<Edge> getAdjacentUntravelledEdges(){
        List<Edge> result = new ArrayList<Edge>();
        for(Edge edge: points[x][y].edges){
            if(edge!=null && !hasBeenWalked(edge)) result.add(edge); 
        }
        return result;
    }

    public void printPath(){
        StringBuilder builder = new StringBuilder();
        for(int y=height-1; y>=0; y--){
            for(int x=0; x<width; x++){
                Point point = points[x][y];
                if(this.x==x && this.y==y){
                    if(point.up()!=null) builder.append('?');
                    else builder.append('.');
                } else {
                    if(point.up()!=null) builder.append('|');
                    else builder.append(' ');
                }
                if(point.right()!=null) builder.append('_');
                else builder.append(' ');
            }
            builder.append('\n');
        }
        System.out.print(builder.toString());
    }

    public boolean walk(){
        ArrayList<Edge> possibleMoves = new ArrayList<Edge>();
        Point cur = points[x][y];
        for(Edge edge: cur.edges){
            if(edge!=null) possibleMoves.add(edge);
        }
        int random = (int)(Math.random()*possibleMoves.size());
        Edge move = possibleMoves.get(random);
        move.walked = true;
        if(move.start == cur){
            x = move.end.x;
            y = move.end.y;
        } else {
            x = move.start.x;
            y = move.start.y;
        }
        stepCount++;
        if(x==dX && y == dY){
            return true;
        } else {
            return false;
        }
    }

    public boolean isSolvable(){
        TreeSet<Point> reachable = new TreeSet<Point>();
        Queue<Point> next = new LinkedList<Point>();
        next.offer(points[x][y]);
        reachable.add(points[x][y]);
        while(next.size()>0){
            Point cur = next.poll();
            ArrayList<Point> neighbors = new ArrayList<Point>();
            if(cur.up()!=null) neighbors.add(cur.up().end);
            if(cur.right()!=null) neighbors.add(cur.right().end);
            if(cur.down()!=null) neighbors.add(cur.down().start);
            if(cur.left()!=null) neighbors.add(cur.left().start);
            for(Point neighbor: neighbors){
                if(!reachable.contains(neighbor)){
                    if(neighbor == points[dX][dY]) return true;
                    reachable.add(neighbor);
                    next.offer(neighbor);
                }
            }
        }
        return false;
    }

    public boolean deletePath(Edge toDelete){
        if(toDelete == null) return true;
//      if(toDelete.walked){
//          System.err.println("Edge already travelled!");
//          return false;
//      }
        int startIdx = toDelete.getStartIdx();
        int endIdx = toDelete.getEndIdx();
        toDelete.start.edges[startIdx] = null;
        toDelete.end.edges[endIdx] = null;
//      if(!isSolvable()){
//          toDelete.start.edges[startIdx] = toDelete;
//          toDelete.end.edges[endIdx] = toDelete;
//          System.err.println("Invalid deletion!");
//          return false;
//      }
        return true;
    }

    static class EdgeList{
        List<Edge> edges;

        public EdgeList(Edge... edges){
            this.edges = new ArrayList<Edge>();
            this.edges.addAll(Arrays.asList(edges));
        }
    }

    static class Edge implements Comparable<Edge>{
        Point start, end;
        boolean walked;

        public Edge(Point start, Point end){
            walked = false;
            this.start = start;
            this.end = end;
            this.start.edges[getStartIdx()] = this;
            this.end.edges[getEndIdx()] = this;
            if(start.compareTo(end)>0){
                Point tmp = end;
                end = start;
                start = tmp;
            }
        }

        public Edge(int x1, int y1, int x2, int y2){
            this(new Point(x1,y1), new Point(x2,y2));
        }

        public boolean exists(){
            return start.edges[getStartIdx()] != null || end.edges[getEndIdx()] != null;
        }

        public int getStartIdx(){
            if(start.x == end.x){
                if(start.y < end.y) return 0;
                else return 2;
            } else {
                if(start.x < end.x) return 1;
                else return 3;
            }
        }

        public int getEndIdx(){
            if(start.x == end.x){
                if(start.y < end.y) return 2;
                else return 0;
            } else {
                if(start.x < end.x) return 3;
                else return 1;
            }
        }

        public boolean isVertical(){
            return start.x==end.x;
        }

        @Override
        public int compareTo(Edge o) {
            int result = start.compareTo(o.start);
            if(result!=0) return result;
            return end.compareTo(o.end);
        }
    }

    static class Point implements Comparable<Point>{
        int x,y;
        Edge[] edges;

        public Point(int x, int y){
            this.x = x;
            this.y = y;
            edges = new Edge[4];
        }

        public Edge up(){ return edges[0]; }
        public Edge right(){ return edges[1]; }
        public Edge down(){ return edges[2]; }
        public Edge left(){ return edges[3]; }

        public int compareTo(Point o){
            int result = Integer.compare(x, o.x);
            if(result!=0) return result;
            result = Integer.compare(y, o.y);
            if(result!=0) return result;
            return 0;
        }
    }
}

Bu çok etkileyici. Kaçmak ne kadar sürer? Kazanan kayıtlar bu kadar yakın kalırsa, onları ayırabilir miyiz görmek için koşu sayısını artırmak zorundayız.

1
Zamanlama snippet'e zaten dahil edilmiştir. 1000 koşu için yaklaşık 400 sn. Bu, her yol silme işleminde çözülebilirlik kontrolü de içerir. 1000 çalışma için yaklaşık 170s kaldırabilirim. Bu yüzden yaklaşık bir saat içinde 20 bin koşu yapabilirim.
justhalf

Aslında daha da optimize etmek 3.5 saat içinde 100k çalıştırmak mümkün olabilir.
adalet

Puanım 100 bin koşuyla ve 10 dakika sürdü. @justhalf daha esnek çift yol labirentinde çok güzel. Nasıl daha iyi bir hale getireceğimi biliyorum, ama şimdi uygulamak için sabrım yok.
Sparr

2
Uygulanan simetrik çözümü gördüğüme sevindim. Bu çözümü geliştirmek için başka bir fikrim daha var ve bu sefer kendi kendime uygulayabileceğimi düşünüyorum :)
Sparr

10

227934 (20x20)

Üçüncü denemem. Çıkışa giden iki yolla, stokastic ile aynı genel yaklaşımı kullanır. Yürüteç bir yolun sonuna ulaştığında kapanır ve çıkmak için diğer yolun sonuna gelmesini ister. Benim gelişimim, yürüteç ilerledikçe yolları oluşturmaktır, böylece sürecin ilk yarısında hangi yoldan ilerlerse giderse, diğer yoldan daha uzun olacaktır.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <iostream>

#define DEBUG 0
#define ROUNDS 10000

#define Y 20
#define X 20
#define H (Y*2+1)
#define W (X*2+1)

int maze[H][W];
int scores[ROUNDS];

int x, y;

void print_maze(){
    char line[W+2];
    line[W+1]=0;
    for(int row=0;row<H;row++) {
        for(int col=0;col<W;col++) {
            switch(maze[row][col]) {
                case 0:
                    line[col]=' ';
                    break;
                case 1:
                    line[col]=row%2?'-':'|';
                    break;
                case 8:
                    line[col]=(row==y*2+1&&col==x*2+1)?'@':'?';
                    break;
                case 9:
                    line[col]=(row==y*2+1&&col==x*2+1)?'@':'*';
                    break;
            }
        }
        line[W]='\n';
        printf("%s",line);
    }
    printf("%d %d\n",y,x);
}

int main(){
    srand (time(NULL));
    long long total_turns = 0;
    for(int round=0;round<ROUNDS;round++) {
        for (int r=0;r<H;r++) {
            for (int c=0;c<W;c++) {
                maze[r][c]=0;
            }
        }
        maze[1][1]=9;
        maze[1][2]=1;
        maze[2][1]=1;
        maze[1][3]=8;
        maze[3][1]=8;
        int progress_l = 0;
        int progress_r = 0;
        int side = 0;
        int closed_exit = 0;
        x=0;
        y=0;
        if (DEBUG) print_maze();
        long long turn = 0;
        int in = 0;
        while (x!=X-1||y!=Y-1) {
            turn++;
            int r = y*2+1;
            int c = x*2+1;
            int dx=0, dy=0;
            if (DEBUG) {
                std::cin>>in;
                switch(in) {
                    case 0:
                        dy=-1; dx=0; break;
                    case 1:
                        dy=0; dx=1; break;
                    case 2:
                        dy=1; dx=0; break;
                    case 3:
                        dy=0; dx=-1; break;
                    default:
                        dy=0; dx=0; break;
                }
            } else {
                int exits = maze[r-1][c] + maze[r][c+1] + maze[r+1][c] + maze[r][c-1];
                int exit_choice = -1;
                do {
                    if (rand()%exits == 0) {
                        exit_choice = exits;
                        break;
                    } else {
                        exits--;
                    }
                }while(exits);

                --exits;

                if (maze[r-1][c]&&!dx&&!dy) {
                    if (exits) {
                        --exits;
                    } else {
                        dy = -1;
                        dx = 0;
                    }
                }
                if (maze[r][c+1]&&!dx&&!dy) {
                    if (exits) {
                        --exits;
                    } else {
                        dy = 0;
                        dx = 1;
                    }
                }
                if (maze[r+1][c]&&!dx&&!dy) {
                    if (exits) {
                        --exits;
                    } else {
                        dy = 1;
                        dx = 0;
                    }
                }
                if (maze[r][c-1]&&!dx&&!dy) {
                    if (exits) {
                        --exits;
                    } else {
                        dy = 0;
                        dx = -1;
                    }
                }
            }

            x+=dx;
            y+=dy;

            if(x==X-1 && y==Y-1) continue;

            if (x==0&&y==1) side=-1;
            if (x==1&&y==0) side=1;
            if (maze[y*2+1][x*2+1]==8) { // room needs another exit, maybe
                if (side==-1) { // left half of maze
                    if (y==1) { // top of a column
                        if (x%2) { // going up, turn right
                            maze[y*2+1][x*2+2]=1;
                            maze[y*2+1][x*2+3]=8;
                        } else { // going right, turn down
                            maze[y*2+2][x*2+1]=1;
                            maze[y*2+3][x*2+1]=8;
                        }
                    } else if (y==Y-1) { // bottom of a column
                        if (x%2 && x<(X-progress_r-3)) { // going right, turn up if there's room
                            maze[y*2+0][x*2+1]=1;
                            maze[y*2-1][x*2+1]=8;
                            progress_l=x+1;
                        } else { // going down or exiting, go right
                            if (x!=X-2 or closed_exit==1) {
                                maze[y*2+1][x*2+2]=1;
                                maze[y*2+1][x*2+3]=8;
                            } else {
                                closed_exit = -1;
                            }
                        }
                    } else { // in a column
                        if (maze[y*2+0][x*2+1]) { // going down
                            maze[y*2+2][x*2+1]=1;
                            maze[y*2+3][x*2+1]=8;
                        } else { // going up
                            maze[y*2+0][x*2+1]=1;
                            maze[y*2-1][x*2+1]=8;
                        }
                    }
                } else { // right half of maze
                    if (y==0) { // top row
                        if (x<X-1) { // go right
                            maze[y*2+1][x*2+2]=1;
                            maze[y*2+1][x*2+3]=8;
                        } else { // go down
                            maze[y*2+2][x*2+1]=1;
                            maze[y*2+3][x*2+1]=8;
                        }
                    } else if (y==Y-2) { // heading right to the exit
                        if (x<X-1) { // go right
                            maze[y*2+1][x*2+2]=1;
                            maze[y*2+1][x*2+3]=8;
                        } else { // go down
                            if (x!=X-1 or closed_exit==-1) {
                                maze[y*2+2][x*2+1]=1;
                                maze[y*2+3][x*2+1]=8;
                            } else {
                                closed_exit = 1;
                            }
                        }
                    } else if (y==Y-3) { // bottom of a column
                        if (x>progress_l+1) { // do we have room for another column?
                            if (!(x%2)&&y>1) { // going left, turn up
                                maze[y*2+0][x*2+1]=1;
                                maze[y*2-1][x*2+1]=8;
                            } else { // going down, turn left
                                maze[y*2+1][x*2+0]=1;
                                maze[y*2+1][x*2-1]=8;
                                progress_r=X-x-1;
                            }
                        } else { // abort, move down to escape row
                            maze[y*2+2][x*2+1]=1;
                            maze[y*2+3][x*2+1]=8;
                        }
                    } else if (y==1) { // top of a column
                        if (!(x%2)) { // going up, turn left
                            maze[y*2+1][x*2+0]=1;
                            maze[y*2+1][x*2-1]=8;
                        } else { // going left, turn down
                            maze[y*2+2][x*2+1]=1;
                            maze[y*2+3][x*2+1]=8;
                        }
                    } else { // in a column
                        if (maze[y*2+0][x*2+1]) { // going down
                            maze[y*2+2][x*2+1]=1;
                            maze[y*2+3][x*2+1]=8;
                        } else { // going up
                            maze[y*2+0][x*2+1]=1;
                            maze[y*2-1][x*2+1]=8;
                        }
                    }

                }
                maze[y*2+1][x*2+1]=9;
            }

            if (DEBUG) print_maze();
        }
        // print_maze();
        printf("turns:%lld\n",turn);
        scores[round] = turn;
        total_turns += turn;
    }
    printf("%d rounds in a %d*%d maze\n",ROUNDS,X,Y);
    long long avg = total_turns/ROUNDS;
    printf("average: % 10lld\n",avg);
    long long var = 0;
    for(int r=0;r<ROUNDS;r++){
        var += (scores[r]-avg)*(scores[r]-avg);
    }
    var/=ROUNDS;
    // printf("variance: %lld\n",var);
    int stddev=sqrt(var);
    printf("stddev:  % 10d\n",stddev);

}

çıktı (zaman ile):

...
turns:194750
turns:506468
turns:129684
turns:200712
turns:158664
turns:156550
turns:311440
turns:137900
turns:86948
turns:107134
turns:81806
turns:310274
100000 rounds in a 20*20 maze
average:     227934
stddev:      138349
real    10m54.797s
...

çıkıştan kesilen sol / alt yolu gösteren (sağ alt) yolun kabaca eşit yarıya sahip labirentime örnek:

  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
 |  _   _   _   _   _   _   _   _   _  |
 | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | |_| |_| |_| |_| |_|
 | | | | | | | | | |_ _ _ _ _ _ _ _ _ _
 |_| |_| |_| |_| |_ _ _ _ _ _ _ _ _ _  !

PS: İki algoritma için farklı bir şekil oluşturmak için daha akıllı kod gerektiren bu algoritmada çok küçük bir gelişmenin farkındayım, tutarlı yükseklik zig zag yerine merdivenler.


Beni etkiledi. Benim oyum var efendim!
stokastic

1
Bu oldukça etkileyici. Sarhoşların yüzlerini çizdiğimizi hatırlıyor musun?
Dennis

Grafiğinizi fark etmek oldukça zor, belki de grafik baskınızı benimkine benzer bir şekilde değiştirebilirsiniz?
adalet

1
@justhalf dileğin benim emrimdir
Sparr

1
@justhalf Kağıt üzerine çizdim. Sadece mantığı yazmanız gerekiyor. Birkaç gün içinde halletmezsem, taslağı sana verir miyim? :)
Sparr

6

98x98 için 135,488,307,9

2094 için 199094,3

Finişe iki yol oluşturan bir çözüm uyguladım ve ayyaş ulaştığında tam olarak birini kapadım. Bu, en azından başından sonuna kadar tek bir yolun uzunluğunun 1,5 katı olacak bir yol uzunluğunu simüle eder. 27 koşudan sonra ortalama 135 milyona çarptım. Ne yazık ki yürüyüş başına birkaç dakika sürüyor, bu yüzden önümüzdeki birkaç saat boyunca çalıştırmak zorunda kalacak. Bir uyarı - çift yol jeneratörüm sadece grafiğin boyutu 4 * n + 2 biçimindeyse çalışır, yani 100'e ulaşabileceğim en yakın 102 veya 98'dir. 98'i kullanarak sonuçları göndereceğim. hala zikzak yolu yöntemini aşmak için. Daha sonra daha iyi bir yol sistemi üzerinde çalışacağım. Şu anda çıktılar her yürüyüşten sonra (numSteps, currentAverage) biçiminde sonuçlar vermektedir.

DÜZENLEME: sabit kod şimdi 4 * n + 2 yerine 2'nin katları olan grafik boyutlarında çalışacak şekilde düzeltildi.

Kod: (grafiğin kaplumbağa çizimi için 187 satırındaki walker yapıcısına 'True' argümanını ekleyin).

import random
import turtle

WIDTH  = 20
HEIGHT = 20
L, U, R, D = 1, 2, 4, 8

def delEdge(grid, x1, y1, x2, y2):

    # check that coordinates are in-bounds
    if not (0 <= x1 < WIDTH):  return False
    if not (0 <= y1 < HEIGHT): return False
    if not (0 <= x2 < WIDTH):  return False
    if not (0 <= y2 < HEIGHT): return False

    # swap order such that x1 <= x2 and y1 <= y2
    if x2 < x1:
        x2 ^= x1
        x1 ^= x2
        x2 ^= x1
    if x2 < x1: print "Swap failure: {}, {}".format(x1, x2)

    if y2 < y1:
        y2 ^= y1
        y1 ^= y2
        y2 ^= y1
    if y2 < y1: print "Swap failure: {}, {}".format(y1, y2)

    # check that only one of the deltas is = 1
    dx = x2 - x1
    dy = y2 - y1

    if dx and dy:       return False
    if not (dx or dy):  return False
    if dx > 1:          return False
    if dy > 1:          return False

    #print "<{}, {}>, <{}, {}>".format(x1, y1, x2, y2)

    if dx > 0:
        try: grid[x1][y1].remove(R)
        except: pass
        try: grid[x2][y2].remove(L)
        except: pass
    if dy > 0:
        try: grid[x1][y1].remove(D)
        except: pass
        try: grid[x2][y2].remove(U)
        except: pass

    return True

def newGrid():

    grid = [[[] for y in xrange(HEIGHT)] for x in xrange(WIDTH)]

    for x in xrange(WIDTH):
        for y in xrange(HEIGHT):
            if x > 0:
                grid[x][y].append(L)
            if x < WIDTH-1:
                grid[x][y].append(R)
            if y > 0:
                grid[x][y].append(U)
            if y < HEIGHT-1:
                grid[x][y].append(D)

    return grid

class walker:

    def __init__(self, grid, mode, draw=False):
        self.x  = 0
        self.y  = 0
        self.dx = WIDTH-1
        self.dy = HEIGHT-1

        self.grid     = grid
        self.mode     = mode
        self.draw     = draw
        self.numSteps = 0

        self.initGrid()

    def initGrid(self):
        if self.mode == 0:
            #pass
            if self.draw: drawGrid(grid)

        elif self.mode == 1:

            for y in xrange(HEIGHT-1):
                if y % 2 == 0:
                    for x in xrange(WIDTH - 1):
                        delEdge(grid, x, y, x, y+1)
                else:
                    for x in xrange(1, WIDTH):
                        delEdge(grid, x, y, x, y+1)
            if self.draw: drawGrid(grid)

        elif self.mode == 2:
            for y in xrange(HEIGHT/2):
                if y % 2 == 0:
                    for x in xrange(1, WIDTH-1):
                        delEdge(grid, x, y, x, y+1)
                else:
                    for x in xrange(2, WIDTH):
                        delEdge(grid, x, y, x, y+1)
            for y in xrange(HEIGHT/2, HEIGHT-1):
                if y%2 == 0:
                    for x in xrange(1, WIDTH-1):
                        delEdge(grid, x, y, x, y+1)
                else:
                    for x in xrange(0, WIDTH-2):
                        delEdge(grid, x, y, x, y+1)
            for y in xrange(1, HEIGHT-1):
                midpoint = HEIGHT/2
                if HEIGHT % 4 == 0: 
                    midpoint = HEIGHT/2 + 1
                if y < midpoint:
                    delEdge(grid, 0, y, 1, y)
                else:
                    delEdge(grid, WIDTH-1, y, WIDTH-2, y)
            if self.draw: drawGrid(grid)

    def walk(self):
        self.numSteps += 1
        choices = grid[self.x][self.y]
        direction = random.choice(choices)
        #print (self.x, self.y), grid[self.x][self.y], direction
        if direction   == L: self.x -= 1
        elif direction == U: self.y -= 1
        elif direction == R: self.x += 1
        elif direction == D: self.y += 1

    def main(self):
        hasBlocked = False
        while (self.x, self.y) != (self.dx, self.dy):
            #print (self.x, self.y), (self.dx, self.dy)
            self.walk()
            if self.mode == 2:
                if not hasBlocked:
                    if (self.x, self.y) == (WIDTH-2, HEIGHT-1):
                        delEdge(self.grid, WIDTH-2, HEIGHT-1, WIDTH-1, HEIGHT-1)
                        hasBlocked = True
                    elif (self.x, self.y) == (WIDTH-1, HEIGHT-2):
                        delEdge(self.grid, WIDTH-1, HEIGHT-1, WIDTH-1, HEIGHT-2)
                        hasBlocked = True

        return self.numSteps

def drawGrid(grid):
    size = 3
    turtle.speed(0)
    turtle.delay(0)
    turtle.ht()
    for x in xrange(WIDTH):
        for y in xrange(HEIGHT):
            dirs = grid[x][y]
            for dir in dirs:
                if dir == L:
                    turtle.pu()
                    turtle.setpos((x*4, y*4))
                    turtle.pd()
                    turtle.setpos(((x-1)*4, y*4))
                elif dir == R:
                    turtle.pu()
                    turtle.setpos((x*4, y*4))
                    turtle.pd()
                    turtle.setpos(((x+1)*4, y*4))
                elif dir == U:
                    turtle.pu()
                    turtle.setpos((x*4, y*4))
                    turtle.pd()
                    turtle.setpos((x*4, (y-1)*4))
                elif dir == D:
                    turtle.pu()
                    turtle.setpos((x*4, y*4))
                    turtle.pd()
                    turtle.setpos((x*4, (y+1)*4))
    turtle.mainloop()

numTrials  = 100
totalSteps = 0.0
i = 0
try:
    while i < numTrials:
        grid = newGrid()

        w = walker(grid, 2)
        steps = w.main()
        totalSteps += steps
        print steps, totalSteps/(i+1)
        i += 1

    print totalSteps / numTrials

except KeyboardInterrupt:
    print totalSteps / i

Ham veri: (geçerli numSteps, koşu ortalaması)

358796490 358796490.0
49310430 204053460.0
106969130 171692016.667
71781702 146714438.0
49349086 127241367.6
40874636 112846912.333
487607888 166384194.571
56423642 152639125.5
71077302 143576700.667
101885368 139407567.4
74423642 133499937.818
265170542 144472488.167
59524778 137938048.923
86919630 134293876.143
122462528 133505119.6
69262650 129489965.25
85525556 126903823.529
161165512 128807250.667
263965384 135920836.632
128907594 135570174.5
89535930 133378067.619
97344576 131740181.636
98772132 130306788.174
140769524 130742735.5
198274280 133443997.28
95417374 131981434.846
226667006 135488307.852

Çalışma sürelerini daha hızlı hale getirmek için grafik boyutunu 20 x 20'ye düşürdüm. Umut ediyorum bu yardım eder.

Şu anda kazanıyorsunuz :)

20 ile 20 puanınız 1000 koşu üzerinde mi?

@Lembik evet öyle.
stokastic

1
@Dennis au contraire :)
Sparr

6

4 yollu yaklaşım, 213k

Tek yollu yaklaşım

Straight line from S to E

ve ortalama bir puan alır N^2.

İki yollu yaklaşım

Loop with S and E opposite each other

ama sonra sarhoş ilk noktaya ulaştığında kesilir:

Loop is cut to give a curved line from S to E

Ortalama bir puan alır (N/2)^2 + N^2.

Dört yollu yaklaşım iki kesim kullanır:

Nested loops, joined in two forks, one either side of E Cut one of the forks on the E side On the other side, cut the fork on the non-E side. This leaves one convoluted path

Dış halkanın uzunluğunda xNve iç halkanın uzunluğunda olduğunu varsayalım (1-x)N. Basitlik için normalleştireceğim N=1.

Başlangıçtan ilk kesime kadar ortalama puan (x/2)^2. İlk kesmeden ikinci kesime kadar uzunluk xve1-x ; bu ortalama bir değer verir (1-x)x^2 + x(1-x)^2 = x-x^2. Sonunda kalan yol1 . Yani toplam puanN^2 (1 + x - 3/4 x^2) .

Başlangıçta her adımda eşit uzunlukta mevcut yolları tutmanın en uygun olacağını varsaydım, bu yüzden ilk yaklaşımım x = 1/2bir puan vermek için kullanıldı 1.3125 N^2. Ancak yukarıdaki analizi yaptıktan sonra x = 2/3puanla en uygun bölünmenin verildiği ortaya çıkıyor 1.3333 N^2.

1000 walks with average 210505.738 in 202753ms

1000 walks with average 212704.626 in 205191ms

kod ile

import java.awt.Point;
import java.util.*;

// http://codegolf.stackexchange.com/q/37484/194
public class RandomWalker {
    private static final int SIZE = 19;
    private static final Point dest = new Point(SIZE, SIZE);

    private final Random rnd = new Random();
    private Point p = new Point(0, 0);
    private int step = 0;
    private Set<Set<Point>> edges;
    private Map<Set<Point>, String> cuttableEdgeNames;
    private Set<String> cutSequences;
    private String cutSequence = "";

    public static void main(String[] args) {
        long start = System.nanoTime();
        long total = 0;
        int walks = 0;
        while (walks < 1000 && total < 1L << 40) {
            RandomWalker rw = new RandomWalker();
            total += rw.walk();
            walks++;
        }

        long timeTaken = System.nanoTime() - start;
        System.out.println(walks + " walks with average " + total / (double)walks + " in " + (timeTaken / 1000000) + "ms");
    }

    RandomWalker() {
        loadMaze(
            "+-+ +-+ +-+ +-+ +-+ +-+ +-+-+-+-+-+-+-+",
            "| | | | | | | | | | | | |             |",
            "+ + + + + + + + + + + + + +-+ +-+ +-+ +",
            "| | | | | | | | | | | | | | | | | | | |",
            "+ + + + + + + + + + + + + + + + + + + +",
            "| | | | | | | | | | | | | | | | | | | |",
            "+ + + + + + + + + + + +-+ + + + + + + +",
            "| | | | | | | | | | |     | | | | | | |",
            "+ + + + + + + + + + + +-+-+ + + + + + +",
            "| | | | | | | | | | | |     | | | | | |",
            "+ + + + + + + + + + + + +-+ + + + + + +",
            "| | | | | | | | | | | | | | | | | | | |",
            "+ + + + + + + + + + + + + + + + + + + +",
            "| | | | | | | | | | | | | | | | | | | |",
            "+ + + + + + + + + + + + + + + + + + + +",
            "| | | | | | | | | | | | | | | | | | | |",
            "+ + + + + + + + + + + + + + + + + + + +",
            "| | | | | | | | | | | | | | | | | | | |",
            "+ +-+ +-+ +-+ +-+ +-+ + + + + + + + + +",
            "|                     | | | | | | | | |",
            "+ +-+ +-+ +-+ +-+ +-+ + + + + + + + + +",
            "| | | | | | | | | | | | | | | | | | | |",
            "+ + + + + + + + + + + + + + + + + + + +",
            "| | | | | | | | | | | | | | | | | | | |",
            "+ + + + + + + + + + + + + + + + + + + +",
            "| | | | | | | | | | | | | | | | | | | |",
            "+ + + + + + + + + + + + + + + + + + + +",
            "| | | | | | | | | | | | | | | | | | | |",
            "+ + + + + + + + + + + + + + + + + + + +",
            "| | | | | | | | | | | | | | | | | | | |",
            "+ + + + + + + + + + + +-+ + + + + + + +",
            "| | | | | | | | | | |     | | | | | | |",
            "+ + + + + + + + + + + +-+ + + + + + + +",
            "| | | | | | | | | | | | | | | | | | | d",
            "+ + + + + + + + + + + + + + +-+ +-+ +c+",
            "| | | | | | | | | | | | | |           |",
            "+ + + + + + + + + + + + + +-+-+-+-+-+ +",
            "| | | | | | | | | | | | |           f b",
            "+-+ +-+ +-+ +-+ +-+ +-+ +-+-+-+-+-+e+a+"
        );
        cutSequences = new HashSet<String>();
        cutSequences.add("ac");
        cutSequences.add("ad");
        cutSequences.add("be");
        cutSequences.add("bf");
    }

    private void loadMaze(String... row) {
        edges = new HashSet<Set<Point>>();
        cuttableEdgeNames = new HashMap<Set<Point>, String>();

        // Horizontal edges
        for (int y = 0; y <= SIZE; y++) {
            for (int x0 = 0; x0 < SIZE; x0++) {
                char ch = row[y * 2].charAt(x0 * 2 + 1);
                if (ch == ' ') continue;
                Set<Point> edge = new HashSet<Point>();
                edge.add(new Point(x0, y));
                edge.add(new Point(x0 + 1, y));
                edges.add(edge);
                if (ch != '-') cuttableEdgeNames.put(edge, "" + ch);
            }
        }

        // Vertical edges
        for (int y0 = 0; y0 < SIZE; y0++) {
            for (int x = 0; x <= SIZE; x++) {
                char ch = row[y0 * 2 + 1].charAt(x * 2);
                if (ch == ' ') continue;
                Set<Point> edge = new HashSet<Point>();
                edge.add(new Point(x, y0));
                edge.add(new Point(x, y0 + 1));
                edges.add(edge);
                if (ch != '|') cuttableEdgeNames.put(edge, "" + ch);
            }
        }
    }

    int walk() {
        while (!p.equals(dest)) {
            List<Point> neighbours = neighbours(p);
            int idx = rnd.nextInt(neighbours.size());
            p = neighbours.get(idx);
            step++;
        }

        return step;
    }

    List<Point> neighbours(Point p) {
        List<Point> rv = new ArrayList<Point>();
        if (p.x > 0) handlePossibleNeighbour(rv, p, new Point(p.x - 1, p.y));
        if (p.x < SIZE) handlePossibleNeighbour(rv, p, new Point(p.x + 1, p.y));
        if (p.y > 0) handlePossibleNeighbour(rv, p, new Point(p.x, p.y - 1));
        if (p.y < SIZE) handlePossibleNeighbour(rv, p, new Point(p.x, p.y + 1));
        return rv;
    }

    private void handlePossibleNeighbour(List<Point> neighbours, Point p1, Point p2) {
        if (edgeExists(p1, p2)) neighbours.add(p2);
    }

    private boolean edgeExists(Point p1, Point p2) {
        Set<Point> edge = new HashSet<Point>();
        edge.add(p1);
        edge.add(p2);

        // Is it cuttable?
        String id = cuttableEdgeNames.get(edge);
        if (id != null) {
            String prefix = cutSequence + id;
            for (String seq : cutSequences) {
                if (seq.startsWith(prefix)) {
                    // Cut it
                    cutSequence = prefix;
                    edges.remove(edge);
                    return false;
                }
            }
        }

        return edges.contains(edge);
    }
}

Ah, anlıyorum, bu yüzden ada yaklaşımım işe yaramıyor, yol uzunluğunu dengeli yapmadım. Sadece benim anlayışımı açıklığa kavuşturmak fiçin c, kodunuzdaki uzunluk N/2, bununla e(veya d) olsun, değil mi, değil mi?
justhalf

N / 2 uzunluğu yerine yE yolu uzunluğu N nasıl?
Sparr

@justhalf, evet. 400 köşe vardır, bu nedenle 401 kenar vardır (bir kesimden sonra grafik bir Hamilton döngüsüdür); iki dış yolun her biri 100 kenardır ve bu nedenle iç halka 101 kenardır.
Peter Taylor

anladım. iki gözlem: a) daha büyük labirentler daha büyük 2 ^ n yollardan yararlanır. b) yol uzunluğunuzu dinamik yaparsanız, mevcut liderleri dinamik iki yollu çözümlerle (kendim ve @justhalf) yenersiniz
Sparr

@Sparr: değil N^2, değil 2^N. Ve evet, bu dinamiği yapmak onu en iyi hale getirecek, zorluk dört yol özelliğini korurken onu dinamik hale getirmektir. @PeterTaylor: Güzel görüntüler!
justhalf

5

Izgarayı neredeyse tüm ksatırlara dilimlemeyi denedim. Bu, etkili bir şekilde rastgele bir yürüyüşe benzer bir şeye dönüştürür k.N * N/k ızgara. En etkili seçenek, her satırı dilimlemektir, böylece sarhoşları zikzaklara zorlarız.

20x20 kasa ( SIZE=19) için

time java RandomWalker 
1000 walks with average 148577.604

real    0m14.076s
user    0m13.713s
sys     0m0.360s

kod ile

import java.awt.Point;
import java.util.*;

// http://codegolf.stackexchange.com/q/37484/194
// This handles a simpler problem where the grid is mutilated before the drunkard starts to walk.
public class RandomWalker {
    private static final int SIZE = 19;
    private final Random rnd = new Random();

    public static void main(String[] args) {
        RandomWalker rw = new RandomWalker();
        long total = 0;
        int walks = 0;
        while (walks < 1000 && total < 1L << 40) {
            total += rw.walk();
            walks++;
        }

        System.out.println(walks + " walks with average " + total / (double)walks);
    }

    int walk() {
        Point dest = new Point(SIZE, SIZE);
        Point p = new Point(0, 0);
        int step = 0;

        while (!p.equals(dest)) {
            List<Point> neighbours = neighbours(p);
            int idx = rnd.nextInt(neighbours.size());
            p = neighbours.get(idx);
            step++;
        }

        return step;
    }

    List<Point> neighbours(Point p) {
        List<Point> rv = new ArrayList<Point>();
        if (p.x > 0) handlePossibleNeighbour(rv, p, new Point(p.x - 1, p.y));
        if (p.x < SIZE) handlePossibleNeighbour(rv, p, new Point(p.x + 1, p.y));
        if (p.y > 0) handlePossibleNeighbour(rv, p, new Point(p.x, p.y - 1));
        if (p.y < SIZE) handlePossibleNeighbour(rv, p, new Point(p.x, p.y + 1));
        return rv;
    }

    private void handlePossibleNeighbour(List<Point> neighbours, Point p1, Point p2) {
        if (edgeExists(p1, p2)) neighbours.add(p2);
    }

    private boolean edgeExists(Point p1, Point p2) {
        return p1.x != p2.x || p1.x == SIZE * (Math.max(p1.y, p2.y) & 1);
    }
}

Tüm çözüm silme işleminin yürüyüş çözümünüze başlamadan önce olduğunu düşünmekte haklı mıyım?

@Lembik, evet. En üstteki yorumun bunu netleştireceğini düşündüm.
Peter Taylor

Öyle, teşekkürler. Yürüyüş sırasında kenarları silerek ne kadar fark yaratabileceğinizi merak ediyorum.

Meraktan, bu ne kadar sürüyor (tamamen ve her çalışma için)?
stokastic

@stokastic, çalışma başına yaklaşık 3 saniye.
Peter Taylor

3

Tekerleği yeniden icat etmek istemeyenler için

Endişelenme! Senin için yeniden keşfedeceğim :)

Bu arada, Java'da.

Rastgele yürümeyle ilgilenen bir Walker sınıfı oluşturdum. Ayrıca, bir hareketin geçerli olup olmadığını belirlemek için yararlı bir yöntem içerir (daha önce yürüdüyse).

Ben zeki insanların yapıcı için rastgele sayılar koymak için anlayabiliyorum, bazı durumlarda test edebilmek için size bıraktım sanırım. Ayrıca, sarhoş yürüyüşü (rastgele) yapmak için walk () işlevini çağırın (tahmin ettiniz!).

Başka bir zaman canComeHome () işlevini uygulayacağım. Tercihen bunu yapmanın en iyi yolunu aradıktan sonra.

import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Queue;
import java.util.TreeSet;

public class Walker {
    int width,height;
    int x,y; //walker's position (does anyone else keep thinking about zombies?!?)
    int dX,dY; //destination
    TreeSet<Edge> pathsNoLongerAvailable = new TreeSet<Edge>();
    TreeSet<Edge> previouslyTraveled = new TreeSet<Edge>();
    int stepCount = 0;

    public static void main(String[]args){
        int side = 10;
        Walker walker = null;
        int total = 0;
        double count = 1000;
        for(int i=0; i<count; i++){
            walker = new Walker(0,0,side,side,side-1,side-1);
            total += walker.stepCount;
            System.out.println("Iteration "+i+": "+walker.stepCount);
        }
        System.out.printf("Average: %.3f\n", total/count);
        walker.printPath();
    }

    public Walker(int startingX,int startingY, int Width, int Height, int destinationX, int destinationY){
        width = Width;
        height = Height;
        dX = destinationX;
        dY = destinationY;
        x=startingX;
        y=startingY;
        while(!walk()){
            // Do something
        }
    }

    public void printPath(){
        for(int i=0; i<width-1; i++){
            if(!pathsNoLongerAvailable.contains(new Edge(i,height-1,i+1,height-1))){
                System.out.print(" _");
            } else {
                System.out.print("  ");
            }
        }
        System.out.println();
        for(int i=height-2; i>=0; i--){
            for(int j=0; j<2*width-1; j++){
                if(j%2==0){
                    if(!pathsNoLongerAvailable.contains(new Edge(j/2,i,j/2,i+1))){
                        System.out.print("|");
                    } else {
                        System.out.print(" ");
                    }
                } else {
                    if(!pathsNoLongerAvailable.contains(new Edge(j/2,i,j/2+1,i))){
                        System.out.print("_");
                    } else {
                        System.out.print(" ");
                    }
                }
            }
            System.out.println();
        }
    }

    public boolean walk(){
        ArrayList<int[]> possibleMoves = new ArrayList<int[]>();
        if(x!=0 && !pathsNoLongerAvailable.contains(new Edge(x,y,x-1,y))){
            possibleMoves.add(new int[]{-1,0});
        }
        if(x!=width-1 && !pathsNoLongerAvailable.contains(new Edge(x,y,x+1,y))){
            possibleMoves.add(new int[]{1,0});
        }
        if(y!=0 && !pathsNoLongerAvailable.contains(new Edge(x,y,x,y-1))){
            possibleMoves.add(new int[]{0,-1});
        }
        if(y!=height-1 && !pathsNoLongerAvailable.contains(new Edge(x,y,x,y+1))){
            possibleMoves.add(new int[]{0,1});
        }
        int random = (int)(Math.random()*possibleMoves.size());
        int[] move = possibleMoves.get(random);
        previouslyTraveled.add(new Edge(x,y,x+move[0],y+move[1]));
        x+=move[0];
        y+=move[1];
        stepCount++;
        if(x==dX && y == dY){
            return true;
        } else {
            return false;
        }
    }

    public boolean isSolvable(){
        TreeSet<Point> reachable = new TreeSet<Point>();
        Queue<Point> next = new LinkedList<Point>();
        next.offer(new Point(x,y));
        reachable.add(new Point(x,y));
        while(next.size()>0){
            Point cur = next.poll();
            int x = cur.x;
            int y = cur.y;
            ArrayList<Point> neighbors = new ArrayList<Point>();
            if(x!=0 && !pathsNoLongerAvailable.contains(new Edge(x,y,x-1,y))){
                neighbors.add(new Point(x-1, y));
            }
            if(x!=width-1 && !pathsNoLongerAvailable.contains(new Edge(x,y,x+1,y))){
                neighbors.add(new Point(x+1, y));
            }
            if(y!=0 && !pathsNoLongerAvailable.contains(new Edge(x,y,x,y-1))){
                neighbors.add(new Point(x, y-1));
            }
            if(y!=height-1 && !pathsNoLongerAvailable.contains(new Edge(x,y,x,y+1))){
                neighbors.add(new Point(x, y+1));
            }
            for(Point neighbor: neighbors){
                if(!reachable.contains(neighbor)){
                    if(neighbor.compareTo(new Point(dX, dY))==0){
                        return true;
                    }
                    reachable.add(neighbor);
                    next.offer(neighbor);
                }
            }
        }
        return false;
    }

    public boolean hasBeenWalked(int x1, int y1, int x2, int y2){
        return previouslyTraveled.contains(new Edge(x1, y1, x2, y2));
    }

    public boolean hasBeenWalked(Edge edge){
        return previouslyTraveled.contains(edge);
    }

    public void deletePath(int startX, int startY, int endX, int endY){
        Edge toAdd = new Edge(startX,startY,endX,endY);
        if(hasBeenWalked(toAdd)){
            System.out.println("Edge already travelled!");
            return;
        }
        pathsNoLongerAvailable.add(toAdd);
        if(!isSolvable()){
            pathsNoLongerAvailable.remove(toAdd);
            System.out.println("Invalid deletion!");
        }
    }

    static class Edge implements Comparable<Edge>{
        Point start, end;

        public Edge(int x1, int y1, int x2, int y2){
            start = new Point(x1, y1);
            end = new Point(x2, y2);
            if(start.compareTo(end)>0){
                Point tmp = end;
                end = start;
                start = tmp;
            }
        }

        @Override
        public int compareTo(Edge o) {
            int result = start.compareTo(o.start);
            if(result!=0) return result;
            return end.compareTo(o.end);
        }
    }

    static class Point implements Comparable<Point>{
        int x,y;
        public Point(int x, int y){
            this.x = x;
            this.y = y;
        }
        public int compareTo(Point o){
            int result = Integer.compare(x, o.x);
            if(result!=0) return result;
            result = Integer.compare(y, o.y);
            if(result!=0) return result;
            return 0;
        }
    }
}

Bu bazı hatalar ve tutarsızlıklar içerir. previouslyTraveled.add(new int[]{x,y,move[0],move[1]})olmalı x+move[0]ve y+move[1]. Width-1Ve Height-1silinen yolları kontrol etmede ve verimsizlik. Kodunuzu düzenledim (labirenti yazdırmak için ek işlevle). Uygunsuz olduğunu düşünüyorsanız geri dönmekten çekinmeyin.
justhalf

Sizin Edgedoğru uygulamıyor Comparable<Edge>. Kenarları ters çevirseniz bile eşit olarak karşılaştırmak istiyorsanız, eşit olmayan durumda da geri dönüşü dikkate almanız gerekir. Bunu yapmanın en kolay yolu, noktaları düzenli tutmak için kurucuyu değiştirmek olacaktır.
Peter Taylor

@PeterTaylor: Uyarı için teşekkürler. Eşit olmayan durumu biraz düşündüm, ama neden önemli olduğunu anlayamadım. Uygulama gereksinimlerini nerede arayabileceğimi biliyor musunuz Comparable?
justhalf

1
docs.oracle.com/javase/7/docs/api/java/lang/Comparable.html Anahtar, toplam sipariş tanımlaması gerektiğidir. Ama eğer Ave Baynı kenar ters ve vardır Calabilirsiniz farklıdır A.compareTo(B) == B.compareTo(A) == 0ama A.compareTo(C) < 0ve B.compareTo(C) > 0.
Peter Taylor

Şimdi nasıl? Başka bir sınıf ekledim. Ve çözülebilir (veya canComeHome()) olup olmadığını kontrol etmek için fonksiyon ekledim
sadece

3

64281

Izgara 100x100'den 20x20'ye değiştirildiğinden güncelleme (1000 test). 100x100 (100 test) puanı kabaca 36M idi.

Bu bir 1D yürüyüşünü yenmeyecek olsa da, sahip olduğum bir fikirle oynamak istedim.

Temel fikir, ızgaranın kare odalara bölünmüş olması ve her birinden sadece bir tane 'homeward' yol açmasıdır. Açık yol sarhoş yakın alır hangisi son o sadece hepsine sahip ama bir tanesi yüzüne çarptı etmek, mümkün olan her türlü çıkışa incelemesi sırasında, yani.

Oda boyutları ile oynadıktan sonra, Peter ile aynı sonuca vardım, daha küçük dilimlemek daha iyidir. En iyi skorlar 2 oda büyüklüğünde.

Average score over 100 trials: 36051265

Kod özensiz, karışıklık sakıncası yok. SHOWDüğmeyi çevirebilirsiniz ve her SHOW_INTadımda yolların bir görüntüsünü gösterecektir, böylece onu eylem halinde izleyebilirsiniz. Tamamlanmış bir koşu şuna benzer:

resim açıklamasını buraya girin

(Bu, önceki 100x100 ızgarasından alınan görüntüdür. 20x20 aynen bu, ancak, daha küçük. Aşağıdaki kod yeni boyut / çalışmalar için güncellendi.)

import java.awt.Color;
import java.awt.Graphics;
import java.awt.Point;
import java.awt.image.*;
import java.util.*;
import javax.swing.*;

public class DrunkWalk {

    boolean SHOW = false;
    int SHOW_INT = 10;
    int SIZE = 20;
    Random rand = new Random();
    Point pos;
    int[][] edges;
    int[][] wally;
    int[] wallx;
    int roomSize = 2;
    JFrame frame;
    final BufferedImage img;

    public static void main(String[] args){
        long total=0,runs=1000;
        for(int i=0;i<runs;i++){
            int steps = new DrunkWalk().run();
            total += steps;
            System.out.println("("+i+") "+steps);
        }
        System.out.println("\n Average " + (total/runs) + " over " + runs + " trials.");
    }

    DrunkWalk(){
        edges = new int[SIZE][SIZE];
        for(int x=0;x<SIZE;x++){
            for(int y=0;y<SIZE;y++){
                if(x>0) edges[x][y] |= WEST;
                if(x+1<SIZE) edges[x][y] |= EAST;
                if(y>0) edges[x][y] |= NORTH;
                if(y+1<SIZE) edges[x][y] |= SOUTH;
            }
        }
        wallx = new int[SIZE/roomSize+1];
        wally = new int[SIZE/roomSize+1][SIZE/roomSize+1];
        pos = new Point(SIZE-1,SIZE-1);
        img = new BufferedImage(SIZE*6+1,SIZE*6+1, BufferedImage.TYPE_INT_RGB);
        frame = new JFrame(){
            public void paint(Graphics g) {
                g.drawImage(img, 50, 50, null);
            }
        };
        frame.setSize(700,700);
        if(SHOW)
            frame.show();
    }

    void draw(){
        try {
            Thread.sleep(200);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        Graphics g = img.getGraphics();
        g.setColor(Color.WHITE);
        g.clearRect(0, 0, img.getWidth(), img.getHeight());
        for(int x=0;x<SIZE;x++){
            for(int y=0;y<SIZE;y++){
                if((edges[x][y]&EAST)==EAST)
                    g.drawLine(x*6, y*6, x*6+5, y*6);
                if((edges[x][y]&SOUTH)==SOUTH)
                    g.drawLine(x*6, y*6, x*6, y*6+5);
            }
        }
        g.setColor(Color.RED);
        g.drawOval(pos.x*6-2, pos.y*6-2, 5, 5);
        g.drawOval(pos.x*6-1, pos.y*6-1, 3, 3);
        frame.repaint();
    }

    int run(){
        int steps = 0;
        Point home = new Point(0,0);
        while(!pos.equals(home)){
            if(SHOW&&steps%SHOW_INT==0){
                System.out.println(steps);
                draw();
            }
            step();
            adversary();
            steps++;
        }
        if(SHOW)
            draw();
        return steps;
    }

    void adversary(){
        int rx = pos.x / roomSize;
        int ry = pos.y / roomSize;
        int maxWalls = roomSize - 1;
        if(wally[rx][ry] < maxWalls){
            if(pos.y%roomSize==0)
                if(delete(pos.x,pos.y,NORTH))
                    wally[rx][ry]++;
        }
        maxWalls = SIZE-1;
        if(pos.x%roomSize==0){
            if(wallx[rx] < maxWalls)
                if(delete(pos.x, pos.y,WEST))
                    wallx[rx]++;


        }       
    }

    void step(){
        List<Integer> choices = getNeighbors(pos);
        Collections.shuffle(choices);
        int dir = choices.get(0);
        pos.x += dir==WEST?-1:dir==EAST?1:0;
        pos.y += dir==NORTH?-1:dir==SOUTH?1:0;
    }

    boolean delete(int x, int y, int dir){
        if((edges[x][y] & dir) != dir)
            return false;
        edges[x][y] -= dir;
        if(dir == NORTH)
            if(y>0) edges[x][y-1] -= SOUTH;
        if(dir == SOUTH)
            if(y+1<SIZE) edges[x][y+1] -= NORTH;
        if(dir == EAST)
            if(x+1<SIZE) edges[x+1][y] -= WEST;
        if(dir == WEST)
            if(x>0) edges[x-1][y] -= EAST;
        return true;
    }

    List<Integer> getNeighbors(Point p){
        if(p.x==SIZE || p.y==SIZE){
            System.out.println("wtf");
            System.exit(0);
        }
        List<Integer> choices = new ArrayList<Integer>();
        if((edges[p.x][p.y] & NORTH) == NORTH)
            choices.add(NORTH);
        if((edges[p.x][p.y] & SOUTH) == SOUTH)
            choices.add(SOUTH);
        if((edges[p.x][p.y] & EAST) == EAST)
            choices.add(EAST);
        if((edges[p.x][p.y] & WEST) == WEST)
            choices.add(WEST);
        return choices;
    }

    final static int NORTH=1,EAST=2,SOUTH=4,WEST=8;
}

Benim bot / sağ-> üst / sol giderken o bot / sol-> üst / sağdan olması gerektiğini fark ettim. Gerçekten
önemliyse

Bu çok hoş ve bence ilk dinamik çözüm. Yolunuzun henüz statik olanlar kadar uzun olmamasıyla ilgileniyorum.

"Oldukça uzun değil" demekle, biri kadar ~ 1/3 ve diğeri kadar ~ 36x demek istiyor musunuz? : P
Geobits

3

188k, 2 yollu

En iyi girdilerin hepsi 2 yol üretme ve sonra sarhoş yolun sonuna yaklaştığında bir kesmeyi kabul ediyor gibi görünüyor. Adaletin girişini yenebileceğimi sanmıyorum ama yardım edemedim ama merak ettim: Neden 2 yol? Neden 3, 5 veya 20 değil?

TL; DR : 2 yol en uygun gibi görünüyor

Ben de bir deney yaptım. Stretch Maniac'ın çerçevesine dayanarak, çeşitli yolları test etmek için bir giriş yazdım. Yol featureSizesayısını değiştirmek için parametreyi düzenleyebilirsiniz. A'nın featureSize20'si 1 yol verir, 10'u 2 yol verir, 7'si 3 verir, 5 4'ü verir vb.

import java.util.ArrayList;
import java.util.BitSet;
import java.util.HashSet;
import java.util.LinkedHashSet;
import java.util.LinkedList;
import java.util.Objects;
import java.util.Queue;
import java.util.Set;
import java.util.concurrent.ThreadLocalRandom;

public class Walker {
    final int width,height;
    int x,y; //walker's position (does anyone else keep thinking about zombies?!?)
    final int dX,dY; //destination
    final int featureSize;
    Set<Edge> pathsNoLongerAvailable = new HashSet<>();
    Set<Edge> previouslyTraveled = new HashSet<>();
    int stepCount = 0;
    private final BitSet remainingExits;

    public static void main(String[]args){
        int side = 20;
        Walker walker = null;
        int total = 0;
        int featureSize = 10;
        double count = 1000;
        for(int i=0; i<count; i++){
            walker = new Walker(0,0,side,side,side-1,side-1, featureSize);
            total += walker.stepCount;
            System.out.println("Iteration "+i+": "+walker.stepCount);
        }
        System.out.printf("Average: %.3f\n", total/count);
        walker.printPath();
    }

    public Walker(int startingX,int startingY, int Width, int Height, int destinationX, int destinationY, int featureSize){
        width = Width;
        height = Height;
        dX = destinationX;
        dY = destinationY;
        x=startingX;
        y=startingY;
        this.featureSize = featureSize;

        deleteBars();

        remainingExits = new BitSet();
        for (int yy = 0; yy < height; yy++) {
            if (!pathsNoLongerAvailable.contains(new Edge(width - 2, yy, width - 1, yy))) {
                remainingExits.set(yy);
            }
        }

        while(!walk()){
            if (x == width - 2
                    && remainingExits.get(y)
                    && remainingExits.cardinality() > 1) {
                deletePath(x, y, x + 1, y);
                remainingExits.set(y, false);
            }
        }
    }

    private void deleteBars() {
        for (int xx = 0; xx < width - 1; xx++) {
            for (int yy = 0; yy < height / featureSize + 1; yy++) {
                if (xx != 0) deletePath(xx, featureSize * yy + featureSize - 1, xx, featureSize * yy + featureSize);
                boolean parity = xx % 2 == 0;
                if (yy == 0) parity ^= true; // First path should be inverted
                for (int i = 0; i < featureSize && featureSize * yy + i < height; i++) {
                    if (i == 0 && !parity) continue;
                    if ((i == featureSize - 1 || featureSize * yy + i == height - 1) && parity) continue;
                        deletePath(xx, featureSize * yy + i, xx + 1, featureSize * yy + i);
                }
            }
        }
    }

    public void printPath(){
        for(int i=0; i<width-1; i++){
            if(!pathsNoLongerAvailable.contains(new Edge(i,height-1,i+1,height-1))){
                System.out.print(" _");
            } else {
                System.out.print("  ");
            }
        }
        System.out.println();
        for(int i=height-2; i>=0; i--){
            for(int j=0; j<2*width-1; j++){
                if(j%2==0){
                    if(!pathsNoLongerAvailable.contains(new Edge(j/2,i,j/2,i+1))){
                        System.out.print("|");
                    } else {
                        System.out.print(" ");
                    }
                } else {
                    if(!pathsNoLongerAvailable.contains(new Edge(j/2,i,j/2+1,i))){
                        System.out.print("_");
                    } else {
                        System.out.print(" ");
                    }
                }
            }
            System.out.println();
        }
    }

    public boolean walk(){
        ArrayList<int[]> possibleMoves = new ArrayList<int[]>();
        if(x!=0 && !pathsNoLongerAvailable.contains(new Edge(x,y,x-1,y))){
            possibleMoves.add(new int[]{-1,0});
        }
        if(x!=width-1 && !pathsNoLongerAvailable.contains(new Edge(x,y,x+1,y))){
            possibleMoves.add(new int[]{1,0});
        }
        if(y!=0 && !pathsNoLongerAvailable.contains(new Edge(x,y,x,y-1))){
            possibleMoves.add(new int[]{0,-1});
        }
        if(y!=height-1 && !pathsNoLongerAvailable.contains(new Edge(x,y,x,y+1))){
            possibleMoves.add(new int[]{0,1});
        }
        int random = ThreadLocalRandom.current().nextInt(possibleMoves.size());
        int[] move = possibleMoves.get(random);
        previouslyTraveled.add(new Edge(x,y,x+move[0],y+move[1]));
        x+=move[0];
        y+=move[1];
        stepCount++;
        if(x==dX && y == dY){
            return true;
        } else {
            return false;
        }
    }

    public boolean isSolvable(){
        Set<Point> reachable = new HashSet<>();
        Queue<Point> next = new LinkedList<>();
        next.offer(new Point(x,y));
        reachable.add(new Point(x,y));
        while(next.size()>0){
            Point cur = next.poll();
            int x = cur.x;
            int y = cur.y;
            ArrayList<Point> neighbors = new ArrayList<>();
            if(x!=0 && !pathsNoLongerAvailable.contains(new Edge(x,y,x-1,y))){
                neighbors.add(new Point(x-1, y));
            }
            if(x!=width-1 && !pathsNoLongerAvailable.contains(new Edge(x,y,x+1,y))){
                neighbors.add(new Point(x+1, y));
            }
            if(y!=0 && !pathsNoLongerAvailable.contains(new Edge(x,y,x,y-1))){
                neighbors.add(new Point(x, y-1));
            }
            if(y!=height-1 && !pathsNoLongerAvailable.contains(new Edge(x,y,x,y+1))){
                neighbors.add(new Point(x, y+1));
            }
            for(Point neighbor: neighbors){
                if(!reachable.contains(neighbor)){
                    if(neighbor.compareTo(new Point(dX, dY))==0){
                        return true;
                    }
                    reachable.add(neighbor);
                    next.offer(neighbor);
                }
            }
        }
        return false;
    }

    public boolean hasBeenWalked(int x1, int y1, int x2, int y2){
        return previouslyTraveled.contains(new Edge(x1, y1, x2, y2));
    }

    public boolean hasBeenWalked(Edge edge) {
        return previouslyTraveled.contains(edge);
    }

    public void deletePath(int startX, int startY, int endX, int endY){
        Edge toAdd = new Edge(startX,startY,endX,endY);
        if(hasBeenWalked(toAdd)){
            System.out.println("Edge already travelled!");
            return;
        }
        pathsNoLongerAvailable.add(toAdd);
        if(!isSolvable()){
            pathsNoLongerAvailable.remove(toAdd);
            System.out.println("Invalid deletion!");
        }
    }

    public static class Edge implements Comparable<Edge>{
        Point start, end;

        public Edge(int x1, int y1, int x2, int y2){
            start = new Point(x1, y1);
            end = new Point(x2, y2);
            if(start.compareTo(end)>0){
                Point tmp = end;
                end = start;
                start = tmp;
            }
        }

        @Override
        public int compareTo(Edge o) {
            int result = start.compareTo(o.start);
            if(result!=0) return result;
            return end.compareTo(o.end);
        }

        @Override
        public String toString() {
            return start.toString() + "-" + end.toString();
        }

        @Override
        public int hashCode() {
            int hash = 7;
            hash = 83 * hash + Objects.hashCode(this.start);
            hash = 83 * hash + Objects.hashCode(this.end);
            return hash;
        }

        @Override
        public boolean equals(Object obj) {
            if (obj == null) {
                return false;
            }
            if (getClass() != obj.getClass()) {
                return false;
            }
            final Edge other = (Edge) obj;
            if (!Objects.equals(this.start, other.start)) {
                return false;
            }
            if (!Objects.equals(this.end, other.end)) {
                return false;
            }
            return true;
        }


    }

    static class Point implements Comparable<Point>{
        int x,y;
        public Point(int x, int y){
            this.x = x;
            this.y = y;
        }
        public int compareTo(Point o){
            int result = Integer.compare(x, o.x);
            if(result!=0) return result;
            result = Integer.compare(y, o.y);
            if(result!=0) return result;
            return 0;
        }
        @Override
        public String toString() {
            return "(" + x + "," + y + ")";
        }

        @Override
        public int hashCode() {
            int hash = 7;
            hash = 23 * hash + this.x;
            hash = 23 * hash + this.y;
            return hash;
        }

        @Override
        public boolean equals(Object obj) {
            if (obj == null) {
                return false;
            }
            if (getClass() != obj.getClass()) {
                return false;
            }
            final Point other = (Point) obj;
            if (this.x != other.x) {
                return false;
            }
            if (this.y != other.y) {
                return false;
            }
            return true;
        }


    }
}

Yapabileceğim ama yapamayacağım birkaç optimizasyon var ve bu, adaletin kullandığı uyarlanabilir hilelerin hiçbirini desteklemiyor.

Her neyse, çeşitli featureSizedeğerler için sonuçlar :

20 (1 path):  156284 
10 (2 paths): 188553
7 (3 paths):  162279
5 (4 paths):  152574
4 (5 paths):  134287
3 (7 paths):  118843
2 (10 paths): 94171
1 (20 paths): 64515

Ve işte 3 yollu bir harita:

 _   _   _   _   _   _   _   _   _    
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| |_| |_| |_| |_| |_| |_| |_| |_| |_| |
|_   _   _   _   _   _   _   _   _   _|
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| |_| |_| |_| |_| |_| |_| |_| |_| |_| |
|  _   _   _   _   _   _   _   _   _  |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
|_| |_| |_| |_| |_| |_| |_| |_| |_| | |

Bunun için teşekkürler. Görünüşe göre tüm para şimdi uyarlamalı hile olduğunu :)

Neden alttaki yolu kesiyorsun? Daha iyi puan için alt yol ile orta yol arasındaki yolu kesebilirim.
justhalf

@justhalf Evet, beklerim. Kodu daha karmaşık hale getireceğine ve her iki şekilde de kazanan bir giriş olmayacağına karar verdim.
James_pic

1
Üç yol (en iyi 3 yol olduğunu varsayarak) ortalama olarak tek yolla aynı olacaktır: Izin vermek Nyol uzunluğu (yani n^2-1), tek yol ortalama N^2hareket gerektirir , üç yol (N/3)^2 + (2N/3)^2 + (2N/3)^2 = N^2artı nispeten küçük bir değer, yani üç yolların tek yol üzerinde önemli bir kazancı yoktur. (Hesaplama, 1-D uzunluk yolundaki rastgele hareketin bir uçtan diğer uca Nortalama N^2hareket gerektirdiğini belirten olasılık sonucuna dayanmaktadır .)
sadece

@justhalf Güzel. Neden 2'nin en iyi olduğuna dair iyi bir ilkeler argümanı bulmak için uğraşıyordum, ama bu çiviyi çiviledi.
James_pic

2

131k (20x20)

İlk denemem, üst ve alt sıra hariç tüm yatay kenarları kaldırmaktı, daha sonra yürüteç bir sütunun altına her ulaştığında, her sütunun altını ziyaret edene ve nihayetinde çıkışa ulaşabilmek. Bu, PeterTaylor'un 1d yürüyüş yaklaşımı kadar ortalama 1/8 adımla sonuçlandı.

Sonra biraz daha dolambaçlı bir şey denemeye karar verdim. Labirenti bir dizi iç içe oyuk köşeli çift ayraç olarak ayırdım ve her köşeli çiftliğin çevresini en az 1,5 kez geçmesini istiyorum. Bu yaklaşık 131k adımlık bir ortalama süreye sahiptir.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <iostream>
#include <math.h>

#define DEBUG 0
#define ROUNDS 10000

#define Y 20
#define X 20
#define H (Y*2+1)
#define W (X*2+1)

int maze[H][W];
int scores[ROUNDS];

int x, y;

void print_maze(){
    char line[W+2];
    line[W+1]=0;
    for(int row=0;row<H;row++) {
        for(int col=0;col<W;col++) {
            switch(maze[row][col]) {
                case 0:
                    line[col]=' ';
                    break;
                case 1:
                    line[col]=row%2?'-':'|';
                    break;
                case 9:
                    line[col]=(row==y*2+1&&col==x*2+1)?'@':' ';
                    break;
            }
        }
        line[W]='\n';
        printf("%s",line);
    }
    printf("%d %d\n",y,x);
}

int main(){
    srand (time(NULL));
    long long total_turns = 0;
    for(int round=0;round<ROUNDS;round++) {
        for (int r=0;r<H;r++) {
            for (int c=0;c<W;c++) {
                if (r==0 || r==H-1 || c==0 || c==W-1) maze[r][c]=0; // edges
                else if (r%2) { // rows with cells and E/W paths
                    if (c%2) maze[r][c] = 9; // col with cells
                    else if (r==1 || r==H-2) maze[r][c]=1; // E/W path on N/Smost row
                    else if (c>r) maze[r][c]=1; // E/W path on chevron perimeter
                    else maze[r][c]=0; // cut path between cols
                } else { // rows with N/S paths
                    if (c%2==0) maze[r][c] = 0; // empty space
                    else if (c==1 || c==W-2) maze[r][c]=1; // N/S path on E/Wmost row
                    else if (r>c) maze[r][c]=1; // N/S path on chevron perimeter
                    else maze[r][c]=0;
                }
            }
        }
        int progress = 0;
        int first_cut = 0;
        x=0;
        y=0;
        if(DEBUG) print_maze();
        long long turn = 0;
        while (x!=X-1||y!=Y-1) {
            if(DEBUG) std::cin.ignore();
            turn++;
            int r = y*2+1;
            int c = x*2+1;
            int exits = maze[r-1][c] + maze[r][c+1] + maze[r+1][c] + maze[r][c-1];
            int exit_choice = -1;
            do {
                if (rand()%exits == 0) {
                    exit_choice = exits;
                    break;
                } else {
                    exits--;
                }
            }while(exits);
            int dx=0, dy=0;
            --exits;
            if (maze[r-1][c]&&!dx&&!dy) {
                if (exits) {
                    --exits;
                } else {
                    dy = -1;
                    dx = 0;
                }
            }
            if (maze[r][c+1]&&!dx&&!dy) {
                if (exits) {
                    --exits;
                } else {
                    dy = 0;
                    dx = 1;
                }
            }
            if (maze[r+1][c]&&!dx&&!dy) {
                if (exits) {
                    --exits;
                } else {
                    dy = 1;
                    dx = 0;
                }
            }
            if (maze[r][c-1]&&!dx&&!dy) {
                if (exits) {
                    --exits;
                } else {
                    dy = 0;
                    dx = -1;
                }
            }
            x+=dx;
            y+=dy;
            if (first_cut==0) {
                if(x==X-1 && y==progress*2+1) {
                    first_cut = 1;
                    maze[y*2+2][x*2+1]=0;
                }
                if(y==Y-1 && x==progress*2+1) {
                    first_cut = 2;
                    maze[y*2+1][x*2+2]=0;
                }
            }
            else if (first_cut==1) {
                if (y==Y-1 && x==progress*2) {
                    maze[y*2+1][x*2+2]=0;
                    progress++;
                    first_cut=0;
                }
                else if (y==Y-2 && x==progress*2+1) {
                    maze[y*2+2][x*2+1]=0;
                    progress++;
                    first_cut=0;
                }
            }
            else if (first_cut==2) {
                if (x==X-1 && y==progress*2) {
                    maze[y*2+2][x*2+1]=0;
                    progress++;
                    first_cut=0;
                }
                else if (x==X-2 && y==progress*2+1) {
                    maze[y*2+1][x*2+2]=0;
                    progress++;
                    first_cut=0;
                }
            }
            if(DEBUG) print_maze();
        }
        // printf("turns:%lld\n",turn);
        scores[round] = turn;
        total_turns += turn;
    }
    long long avg = total_turns/ROUNDS;
    printf("average: % 10lld\n",avg);
    long long var = 0;
    for(int r=0;r<ROUNDS;r++){
        var += (scores[r]-avg)*(scores[r]-avg);
    }
    var/=ROUNDS;
    // printf("variance: %lld\n",var);
    int stddev=sqrt(var);
    printf("stddev:  % 10d\n",stddev);

}

0

Hiçbir şey yapma

Adam rastgele hareket ettiğinden, herhangi bir düğümü çıkarmanın sadece uzun vadede eve dönme şansını artıracağını düşünebilirsiniz.

İlk olarak, tek boyutlu duruma bakalım, bu, her ızgara noktasını (neredeyse) ziyaret eden, ölüler veya döngüler olmadan, kıvrımlı bir yolla bitene kadar düğümleri kaldırarak elde edilebilir. Bir N x Nızgarada, böyle bir yolun maksimum uzunluğu ( L = N*N - 2 + N%2 10x10 ızgara için 98). Yol boyunca yürümek, aşağıdaki gibi oluşturulmuş bir geçiş matrisi ile tanımlanabilir:T1d . geçiş matrisi

(Hafif asimetri, çok küçük veya sonsuz matrisler dışında analitik bir çözüm bulmayı zorlaştırır, ancak yine de matrisi köşegenleştirmekten daha hızlı bir sayısal çözüm elde ederiz).
Durum vektörünün 1başlangıç ​​konumunda bir teki vardır ve Kadımlardan sonra (T1d**K) * statebize başlangıçtan belirli bir mesafede olma olasılığını verir (bu, 2**Kyol boyunca olası tüm yürüyüşler üzerinde ortalamaya eşdeğerdir !)

Simülasyonu 10*L**2adımlar için çalıştırma ve her bir adımdan sonra durum vektörünün son elemanını kaydetme, bu da bize belirli bir toplam adımdan sonra - kümülatif olasılık dağılımı - hedefe ulaşma olasılığını verir cd(t). Farklılaştırmak bize phedefe belirli bir zamanda tam olarak ulaşma olasılığını verir . Entegre ettiğimiz ortalama süreyi bulmak için t*p(t) dt
Hedefe ulaşmak için ortalama süre L**2, 1'e çok hızlı giden bir faktörle orantılıdır . Standart sapma, ortalama sürenin yaklaşık% 79'unda neredeyse sabittir.
Bu grafik, farklı yol uzunlukları için hedefe ulaşmak için ortalama süreyi gösterir (5x5 ila 15x15 ızgara boyutlarına karşılık gelir) resim açıklamasını buraya girin

Hedefe ulaşma olasılığı şöyle görünür. İkinci eğri dolu görünüyor çünkü her garip zamanda pozisyon garip ve bu nedenle hedefte olamıyor. resim açıklamasını buraya girin

Buradan dengeli çift yol stratejisinin burada en iyi sonucu verdiğini görebiliriz. Daha fazla yol yapma yükünün boyutlarına kıyasla önemsiz olduğu daha büyük ızgaralar için, Peter Taylor'ın tarif ettiği gibi, yol sayısını arttırmaktan daha iyi olabiliriz, ancak uzunlukları dengede tutarız

Hiçbir düğümü hiç çıkarmazsak ne olur?

Sonra iki katına kadar yürünebilir düğümümüz ve iki yerine dört olası yönümüz olurdu. Görünüşe göre hiç bir yere gitmeyi pek mümkün kılmıyor. Bununla birlikte, simülasyonlar aksi halde gösterir, 10x10 ızgarada sadece 100 adımdan sonra adamın hedefine ulaşması oldukça olasıdır, bu yüzden adalarda onu tuzağa düşürmek boşuna bir girişimdir, çünkü N**2ortalama bir tamamlanma süresi ile potansiyel bir uzun sarma yolu ticareti yapıyorsunuz N**4. N**2adımlarla geçen bir ada

2d ızgarada yürüyüş olasılığı

from numpy import *
import matplotlib.pyplot as plt

def L(N): # maximal length of a path on an NxN grid
    return N*N - 2 + N%2

def T1d(N): # transition along 1d path
    m = ( diag(ones(N-1),1) + diag(ones(N-1),-1) )/2.
    m[1,0] = 1
    m[-2,-1] = 0
    m[-1,-1] = 1
    return m

def walk(stepmatrix, state, N):
    data = zeros(N)
    for i in xrange(N):
        data[i] = state[-1]
        state = dot(stepmatrix, state)
    return data

def evaluate(data):
    rho = diff(data)/data[-1]
    t = arange(len(rho))
    av = sum(rho*t)
    stdev = sum((t-av)**2 * rho)**.5
    print 'average: %f\nstd: %f'%(av, stdev)
    return rho, av, stdev

gridsize = 10
M = T1d(L(gridsize))
initpos = zeros(L(gridsize))
initpos[0] = 1
cd = walk(M, initpos, L(gridsize)**2*5)

plt.subplot(2,1,1)
plt.plot(cd)
plt.title('p of reaching the goal after N steps')
plt.subplot(2,1,2)
plt.plot(evaluate(cd)[0])
plt.title('p of reaching the goal at step N')
plt.show()


''' 
# uncomment to run the 2D simulation
# /!\ WARNING /!\ generates a bunch of images, dont run on your desktop

def links(k,n):
    x = [k-n, k+n]
    if k%n != 0: x.append(k-1)
    if k%n != n-1: x.append(k+1)
    x = [i for i in x if 0<= i <n*n]
    return x

N = 10 # gridsize    

MM = zeros((N*N, N*N)) # build transition matrix
for i in range(N*N):
    temp = links(i,N)
    for j in temp: MM[i,j] = 1./len(temp)
MM[:,-1] = zeros(N*N)
MM[-1,-1] = 1

pos = zeros(N*N)
pos[0] = 1
for i in range(N*N):
    plt.imsave('grid_%.2d'%i, kron(pos.reshape((N,N)), ones((10,10))), cmap='gray')
    pos = dot(MM, pos)
'''

Çaba ve güzel grafikler için +1. Ancak bu soruya cevap vermiyor ve ilk iki kelime analizinizin sonucuyla çelişiyor. Ve gerçekten grafiklerinizin eksenlerini etiketlemelisiniz. Olasılık grafiğiniz hangi ızgara boyutuna uygulanabilir?
justhalf

Güzel resimler ama sorunun doğru olduğundan emin değilim. Örneğin, "İnsan rastgele hareket ettiğinden, herhangi bir düğümü kaldırmanın sadece uzun vadede eve dönme şansını artıracağını düşünebiliriz." 1) adam her zaman sonunda ilgili kurallar altında eve dönecektir, bu da alakalı görünmüyor ve 2) düğümleri değil kenarları kaldırıyoruz.
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.