Hashiwokakero: Köprüler kurun!


19

Hashiwokakero (Japonca "köprüler kurmak") bir grup adayı köprülerle bağlamakla görevlendirilmiş bir bilmecedir. Kurallar:

  1. Köprüler iki ada arasında dikey veya yatay olarak ilerlemelidir.
  2. Köprüler birbirini geçmeyebilir.
  3. Bir çift ada en fazla iki paralel köprü ile bağlanabilir.
  4. Her ada, 1 ile 8 arasında bir sayı ile işaretlenmiştir. Bir adaya bağlanan köprü sayısı o adadaki sayı ile eşleşmelidir.
  5. Köprüler, adaları tek bir bağlı gruba bağlamak zorundadır.

Göreviniz Hashiwokakero bulmacaları çözecek bir program yazmaktır.

Herhangi bir bulmacanın çözülebilir olduğunu ve sadece bir çözüm olduğunu varsayabilirsiniz.

Program oldukça verimli olmalıdır. Örneğin, aşağıdaki 25x25 bulmacayı çözmek ortalama bir bilgisayarda 10 dakikadan fazla sürmemeli ve bir gigabayttan fazla bellek kullanmamalıdır. 7x7 gibi küçük bulmacaları çözmek saniyeler sürer.

Giriş:

Bulmaca basamağı ile, karakterlerin bir 2D harita olarak verilecektir 1için 8suyu temsil eden adalar ve boşluklar. Çizgiler gerekirse aynı uzunlukta yapmak için boşluklarla doldurulur.

Adalar her zaman yatay ve dikey olarak en az bir kare su ile ayrılacak, böylece aralarında potansiyel köprüyü yerleştirmek için yer olacaktır. Her zaman bir bulmacada en az iki ada olacaktır.

Programınız tercihen bulmaca haritasını standart girişten okumalıdır, ancak programlama diliniz gerektiriyorsa alternatif bir giriş yöntemi belirleyebilirsiniz.

Çıktı:

Gerektiğinde köprülerle değiştirilen boşluklar hariç, çıktı girdi gibi olmalıdır. Köprüler, yatay ve dikey tek ve çift köprüleri temsil etmek için Unicode kutu çizim karakterleri (U + 2500), (U + 2502), (U + 2550) ve (U + 2551) kullanılarak çizilmelidir .

Unicode karakterleri bir sorun varsa, ASCII karakterleri kullanabilir -, |, =ve Hbunun yerine.

Kazanma kriterleri:

Bu kod golf. En kısa doğru ve makul derecede verimli çözüm kazanır.

Örnekler:

Bulmaca (7x7):

2 2  1 
 1  4 3
3  2   
    4  
 3 2  3
1      
 3  4 2

Çözüm:

2─2──1
│1──4─3
3──2║ ║ 
│  │4 ║
│3─2║ 3
1║  ║ │
 3──4─2

Bulmaca (25x25):

2 2 2  2  1 1 2 2  2  2 2 
           1 3 5  4  4 2  
2  2 4 5  5 4 2 2  1    3 
  2   1  1 3 3 2       2  
   3 4 4  4 4 5 4 3  2  3 
2 4 5 4            2   3  
 2 1   4 2  4 3   1  1  2 
2 1 3     1  1  6  4   2  
 3 2  4  3  6 3         2 
2 2 3  3  2     5 2  4 3  
 2 1               1    2 
  1 3 3 3 3 5 8 7 6  5 4  
2  3   1 1 2              
 1   1  5 1   4 5 6 3 1 2 
1   1  2    2        3 4  
 3 5 4  4  3  3 8 7 5 1 2 
2      3  1 2  2     1 1  
 2      2  2  2 5 7 6 3 3 
3  3 6 3  5 3  2   2 2 3  
 2            1 2 3 2   2 
3  4 6  4 5 5  3 3 5  1   
 2    1    2 2  1   1  3  
2    1    1 2 3  6 5 2  2 
 2 3  4 4  4 2         1  
2 2  2 2  2 2 2  1  1 3 2 

Çözüm:

2─2─2──2  1 1─2─2──2──2─2
│      │  │1─3═5══4══4─2│
2  2─4─5══5═4═2│2──1 │ │3
│ 2│ ║1│ 1─3═3─2│    │ 2║
│ ║3═4│4══4─4═5─4─3──2 │3
2 4═5─4│  │ │ ║ │ │2───3│
│2─1║ ║4─2│ 4─3 │ 1│ 1 │2
2│1─3 ║║ │1 ║1──6══4 │ 2│
│3─2──4║ 3══6─3 ║  │ │ │2
2│2═3 │3──2 │ ║ 5─2│ 4─3│
│2─1│ │   │ │ ║ ║ │1 ║ │2
│ 1─3─3─3─3─5═8═7═6──5═4│
2──3───1│1─2│ ║ │ ║    ││
 1 │ 1──5─1││ 4─5─6─3─1│2
1│ │1──2║  │2 │ ║ ║ │3═4│
│3─5═4 │4──3│ 3═8═7═5│1│2
2│ │ ║ 3│ 1│2──2║ │ ║1│1│
│2 │ ║ ║2 │2──2│5═7═6─3─3
3│ 3─6─3│ 5═3 │2│ ║2│2─3│
║2 │ ║  │ ║ │ 1│2─3║2│ ║2
3│ 4═6──4─5─5──3─3─5││1║│
│2 │ │1 │ │2║2──1│ ║1││3│
2│ │ 1│ │ 1║2│3══6═5─2││2
│2─3──4═4──4─2│  │    │1│
2─2──2─2──2─2─2  1  1─3─2

Ek bulmacalar burada bulunabilir .


Girişin çözülmesinin imkansız olduğu bir seçenek var mı?
Hauleth

@Hauleth: Herhangi bir bulmacanın çözülebilir olduğunu ve sadece bir çözüm olduğunu varsayabilirsiniz.
Hamar

Awww, bunu görmedim. Benim hatam.
Ocak'ta Hauleth

Minimum bulmaca boyutu veya düğüm sayısı var mı veya 1 1girdi gibi garip durumlar hakkında endişelenmemiz gerekiyor mu?
captncraig

@CMP: Açık bir minimum yoktur, ancak kurallar bundan daha küçük bir bulmaca olmadığını ima eder 1 1, bu geçerli bir bulmacadır ve doğru bir şekilde ele alınmalıdır.
Hamar

Yanıtlar:


10

Haskell, 1074 karakter

main=interact$unlines.(\f@(l:_)->let a=(length l,length f)in head.filter(網(0,0)a).計(0,0)a$f).lines
橋=結"─═"数;結=zip;網 置@(右,下) 域@(幅,高) 地|下>=高=實|右>=幅=網(0,下+1)域 地|目 置 地`含`島
 =折((&&).折((&&).not.(`含`島))實)實(潔 置 域 地)|實=網(右+1,下)域 地
導=[(種,動)|動<-[1,-1],種<-"─═│║"];潔 置 域 地=折(拡 置 域)(換 地 置 '0')導
拡 置 域(種,動)地|([地],置)<-続(行 置 種 動)域 種 動 種 地=潔 置 域 地|實=地
計 置@(右,下)域@(幅,高)地|下>=高=[地]|右>=幅=計(0,下+1)域 地|[価]<-目 置 地`価`島
 =見込(価-環 置 域 地)>>=折(\種->(fst.続(行 置 種 1)域 種 1' '=<<))[地]>>=計(右+1,下)域
 |實=計(右+1,下)域 地;見込 価|価<0=[]|価>4=[]|實=[[""],["─","│"],["─│","║","═"],["─║","═│"],["═║"]]!!価
続 置 域 種 動 空 地|存 置 域=建 置 域 種 動 空 地|實=([],置)
建 置 域 種 動 空 地|目 置 地`含`島=([地],置)|目 置 地==空=続(行 置 種 動)域 種 動 空(換 地 置 種)
 |實=([],置);存(右,下)(幅,高)|右>=0,幅>右,0<=下=高>下|實=not 實;環 置 域 地=折(環行 置 域 地)0導
環行 置 域 地(種,動)数|置<-行 置 種 動,存 置 域,事<-目 置 地,事==種,[価]<-事`価`(橋++桥)=数+価|實=数
行(右,下)種 数|種`含`橋=(右+数,下)|實=(右,下+数);目(右,下)地=地!!下!!右;島=結"12345678"数
換 地(右,下)事|(上に,線:下に)<-捌 下 地,(左,古:右)<-捌 右 線=上に++(左++(事:右)):下に
折=foldl.flip;捌 0覧=([],覧);捌 数(物:覧)|(一覧,他)<-捌(数-1)覧=(物:一覧,他);實=1>0;数=[1..]
価 _[]=[];価 事((物,数):覧)|事==物=[数]|實=価 事 覧;含 事 覧|[_]<-価 事 覧=實|實=1<0;桥=結"│║"数


Başlangıçta, basit desen eşleştirme ve liste kombinasyonları açısından ilkel fonksiyonları uygulayarak daha da tamamen Japonca'ya sahiptim:

Haskell, 1192

main=interact$unlines.(\f@(l:_)->let a=(length l,length f)in head.filter(網(0,0)a).計(0,0)a$f).lines
橋=結合"─═"数;結合 []_=[];結合(事:覧)(物:一覧)=(事,物):結合 覧 一覧
網 置@(右,下) 域@(幅,高) 地|下>=高=實|右>=幅=網(0,下+1)域 地|目 置 地`含`島
 =折る((&&).折る((&&).反対.(`含`島))實)實(潔 置 域 地)|實=網(右+1,下)域 地
導=[(種,動)|動<-[1,-1],種<-"─═│║"];潔 置 域 地=折る(拡 置 域)(換 地 置 '0')導
拡 置 域(種,動)地|([地],置)<-続(行 置 種 動)域 種 動 種 地=潔 置 域 地|實=地
計 置@(右,下)域@(幅,高)地|下>=高=[地]|右>=幅=計(0,下+1)域 地|[価]<-目 置 地`価`島
 =見込(価-環 置 域 地)>>=折る(\種->(一.続(行 置 種 1)域 種 1' '=<<))[地]>>=計(右+1,下)域
 |實=計(右+1,下)域 地;見込 価|価<0=[]|価>4=[]|實=[[""],["─","│"],["─│","║","═"],["─║","═│"],["═║"]]!!価
続 置 域 種 動 空 地|存 置 域=建 置 域 種 動 空 地|實=([],置)
建 置 域 種 動 空 地|目 置 地`含`島=([地],置)|目 置 地==空=続(行 置 種 動)域 種 動 空(換 地 置 種)
 |實=([],置);存(右,下)(幅,高)|右>=0,幅>右,0<=下=高>下|實=反対 實;環 置 域 地=折る(環行 置 域 地)0導
環行 置 域 地(種,動)数|置<-行 置 種 動,存 置 域,事<-目 置 地,事==種,[価]<-事`価`結 橋 桥=数+価|實=数
行(右,下)種 数|種`含`橋=(右+数,下)|實=(右,下+数);一(第,第二)=第;目(右,下)地=地!!下!!右;島=結合"12345678"数
換 地(右,下)事|(上に,線:下に)<-捌 下 地,(左,古:右)<-捌 右 線=結 上に(結 左(事:右):下に);変 関[]=[]
変 関(物:覧)=関 物:変 関 覧;折る 関 物[]=物;折る 関 物(事:覧)=折る 関(関 事 物)覧;捌 0覧=([],覧)
捌 数(物:覧)|(一覧,他)<-捌(数-1)覧=(物:一覧,他);實=1>0;反対 真|真=1<0|實=實;数=[1..];結=(++)
価 _[]=[];価 事((物,数):覧)|事==物=[数]|實=価 事 覧;含 事 覧|[_]<-価 事 覧=實|實=1<0;桥=結合"│║"数



$ make ;   def0 +RTS -M1g < test-25x25.txt
ghc -o bin/def0 golfed0.hs -rtsopts -O2
[1 of 1] Compiling Main             ( golfed0.hs, golfed0.o )
Linking bin/def0 ...
2─2─2──2  1 1─2─2──2──2─2
│      │  │1─3═5══4══4─2│
2  2─4─5══5═4═2│2──1 │ │3
│ 2│ ║1│ 1─3═3─2│    │ 2║
│ ║3═4│4══4─4═5─4─3──2 │3
...

i5 cihazımda ≈3 dakika içinde çalışıyor .


Yorumlanan sürüm:

type Board = [[Char]]
type Location = (Int,Int)
type BoardDimensions = (Int,Int)

main=interact$unlines.(\f@(l:_)
  ->let a=(length l,length f)  -- dimensions of the field from the input
     in head.filter(網(0,0)a)   --   ↙−   determine all possible ways to build bridges
  {-                ↑      -}   .計(0,0)a $ f                                         ).lines
     -- and use the first that is simply connected. 


 --  islands,            bridges
島=結合"12345678"数;  橋=結合"─═"数;  桥=結合"│║"数;               数=[1..]
 -- each with the associated "value" from the natural numbers _↗



     -- plan & commit the building of bridges
計 :: Location -> BoardDimensions -> Board -> [Board]
計    置@(右,下)   域@(幅,高)          地
 |下>=高=[地]        -- Walk over the board until every location was visited.
 |右>=幅=計(0,下+1)域 地
 |[価]<-目 置 地`価`島      -- When there is an island, read it's "value" 価
    =見込(価-環 置 域 地)  -- substract the value of the already-built bridges; fetch the ways to build bridges with the remaining value
     >>=折る(\種->(一.続(行 置 種 1)域 種 1' '=<<))[地]  -- for each of these ways, try to build a bridge.
      >>=計(右+1,下)域    -- for every possibility where that was successful, go on with the resultant board.
 |實=計(右+1,下)域 地

  -- Ways to build bridges with value 価:
見込 :: Int -> [[Char]]
見込    価
 |価<0=[]   -- not possible to build bridges with negative value
 |価>4=[]   -- nor with value >4  (we're always building south- / eastwards)
 |實=[ [""]      -- value 0
     ,["─","│"]  -- value 1
     ,["─│","║","═"],["─║","═│"],["═║"]]!!価  -- ... and so on

 -- continue, if Location is on the board, with the building of a bridge of type 種
続 :: Location -> BoardDimensions -> Char -> Int -> Char -> Board -> ([Board],Location)
続    置          域                  種      動      空      地
 |存 置 域=建 置 域 種 動 空 地
 |實=([],置)

      -- build that bridge, 
建 :: Location -> BoardDimensions -> Char -> Int -> Char -> Board -> ([Board],Location)
建    置          域                  種      動      空      地
 |目 置 地`含`島=([地],置)  -- but if we've reached an island we're done
 |目 置 地==空 -- if we're in water or what else (空, can also take on the value of 種 if we only want to check if the bridge is already there)
    =続(行 置 種 動)域 種 動 空(換 地 置 種) -- place (換) the bridge and go (行く) to the next location
 |實=([],置)  -- if we've reached something else (i.e. crossing bridges), return no result.

     -- number of connections present at location 置
環 :: Location -> BoardDimensions -> Board -> Int
環 置 域 地=折る(環行 置 域 地)0導  -- for all neighbouring positions
環行 置 域 地(種,動)数
 |置<-行 置 種 動,存 置 域   -- if they're on the board
 ,事<-目 置 地,事==種    --   and there's a bridge in the correct direction
 ,[価]<-事`価`結 橋 桥=数+価  -- check its value and sum it to the previous ones
 |實=数   -- if there's no bridge there, don't sum anything


導=[(種,動)|動<-[1,-1],種<-"─═│║"]     -- directions to go

--     --     --     --     --     --     --     --     --     --     --     --

     -- test for connectedness:
網 :: Location -> BoardDimensions -> Board -> Bool
網    置@(右,下)      域@(幅,高)         地      -- Walk over the board until an island is
 |下>=高=實                                    -- found. 潔 marks all islands connected to
 |右>=幅=網(0,下+1)域 地                        -- that island; then check if any unmarked
 |目 置 地`含`島=折る((&&).折る((&&).反対.(`含`島))實)實(潔 置 域 地)  -- islands are left in the
 |實=網(右+1,下)域 地                                                          -- result.

         -- mark islands connected to the one at 置:
潔 :: Location -> BoardDimensions -> Board -> Board
潔    置           域                 地    =折る(拡 置 域)(換 地 置 '0')[(種,動)|動<-[1,-1],種<-"─═│║"]
 -- mark the island at 置 with '0', then, for all the possible ways to go...
     -- Proceed with the marking in some direction
拡 :: Location -> BoardDimensions -> (Char,Int) -> Board -> [[Char]]
拡 置 域(種,動)地     -- if an island is found in the given direction, give control to 潔 there
 |([地],置)<-続(行 置 種 動)域 種 動 種 地=潔 置 域 地
 |實=地   -- if none is found (i.e. there was no bridge), just return the board without further marking


--     --     --     --     --     --     --     --     --     --     --     --
-- Primitives:

存 :: Location -> BoardDimensions -> Bool
存(右,下)(幅,高)|右>=0,幅>右,0<=下=高>下|實=反対 實  -- check if (右,下) is on the board

行 :: Location -> Char->Int -> Location
行(右,下)種 数|種`含`橋=(右+数,下)|實=(右,下+数)   -- go in some direction (determined by where 種 leads to)

目 :: Location -> Board -> Char
目(右,下)地=地!!下!!右          -- lookup what's at location (右,下)

   -- replace what's at (右,下) with 事
換 :: Board -> Location -> Char -> Board
換 地(右,下)事|(上に,線:下に)<-捌 下 地,(左,古:右)<-捌 右 線=結 上に(結 左(事:右):下に)




変 :: (a -> b) -> [a] -> [b]
変 関[]=[]                       -- Standard Haskell map function (just noticed I didn't actually use it at all)
変 関(物:覧)=関 物:変 関 覧

折る :: (b -> a -> a) -> a -> [b] -> a
折る 関 物[]=物                            -- equivalent 折る=foldl.flip
折る 関 物(事:覧)=折る 関(関 事 物)覧

捌 0覧=([],覧)
捌 数(物:覧)|(一覧,他)<-捌(数-1)覧=(物:一覧,他)   -- splitAt

實=1>0           --true

反対 真|真=1<0|實=實  -- not


結=(++)     -- list linking

一(第,第二)=第    -- fst

価 :: Eq a => a -> [(a,b)] -> [b]
価 _[]=[]                             -- lookup function
価 事((物,数):覧)|事==物=[数]|實=価 事 覧

含 :: Eq a => a -> [(a,b)] -> Bool
含 事 覧|[_]<-価 事 覧=實|實=1<0      -- equivalent 含 x = elem x . map fst


結合 []_=[]                          -- zip
結合(事:覧)(物:一覧)=(事,物):結合 覧 一覧

1
Vay. Çinlilerin ne hakkında olduğunu açıklamak ister misiniz?
captncraig

1
@CMP: Aslında Japonca olması gerekiyordu ... aslında olsa da, Vikisözlük'te kabaca doğru anlamı olan şeyleri aradım. - Tamam, kodun yorumlanmış bir versiyonunu ekledi.
counterclockwis çevirmek için durdu

5

Python, 1079 karakter

import sys,re,copy
A=sys.stdin.read()
W=A.find('\n')+1
r=range
V={}
E=[]
for i in r(len(A)):
 if'0'<A[i]<'9':V[i]=int(A[i])
 for d in(1,W):m=re.match('[1-8]( +)[1-8]',A[i::d]);E+=[[i,i+len(m.group(1))*d+d,d,r(3)]]if m else[]
def S(E):
 q,t=0,1
 while q!=t:
  for e in E:
   if any(d[0]and e[3][0]==0and any(i in r(a+c,b,c)for i in r(e[0]+e[2],e[1],e[2]))for a,b,c,d in E):e[3]=[0]
  for i in V:
   m=sum(min(e[3])for e in E if i in e[:2]);n=sum(max(e[3])for e in E if i in e[:2])
   if m>V[i]or n<V[i]:return
   for e in E:
    if m+2>V[i]and i in e[:2]:e[3]=e[3][:V[i]-m+1]
    if n-2<V[i]and i in e[:2]:e[3]=e[3][V[i]-n-1:]
  t=q;q=sum(len(e[3])for e in E)
 Q=[min(V)]
 i=0
 while Q[i:]:
  x=Q[i];i+=1
  for e in E:
   if x in e[:2]:
    if sum(e[3]):
     for y in e[:2]:
      if y not in Q:Q+=[y]
 if len(Q)!=len(V):return
 U=[e for e in E if e[3][1:]]
 if U:
  for w in U[0][3]:U[0][3]=[w];S(copy.deepcopy(E))
 else:
  B=A
  for a,b,c,d in E:
   if d[0]:
    for i in r(a+c,b,c):B=B[:i]+[{1:'─',W:'│'},{1:'═',W:'║'}][d[0]-1][c]+B[i+1:]
  print(B)
  sys.exit(0)
S(E)

Kod, Smakul bir sürede çalışmasını sağlamak için bazı kısıtlama yayılımı kullanarak oldukça basit bir ayrıntılı arama yapar. Egeçerli kenar kümesini, [dan, deltaya, olası ağırlıklar] biçiminde temsil eder . den ve üzere ada tanımlayıcıları ve delta ya da 1 yatay kenarlar veya içindir W dikey kenarlar (= genişlik çizgiler). olası ağırlıklar , o kenarın bilinen bilinen durumunu kodlayan [0,1,2] ' nin bir alt listesidir (0 = köprü yok, 1 = tek köprü, 2 = çift köprü).

Süç şey yapar. İlk olarak, bir kenarın artık olasılık olarak 0 ağırlığına sahip olmaması gibi bilgileri yayır, daha sonra onu geçen tüm kenarlar elimine edilir (olası ağırlıkları [0] olarak ayarlanır). Benzer şekilde, bir adada meydana gelen kenarlar için minimum ağırlığın toplamı adanın ağırlığına eşitse, bu kenarların tümü minimum olarak ayarlanır.

İkinci olarak, Sgrafiğin hala [0] olmayan kenarlar ( Qhesaplama) kullanılarak bağlı olup olmadığını kontrol eder .

Son olarak, Shala tam olarak belirlenmemiş bir kenarı seçer ve kendini tekrar tekrar çağırır ve bu kenarı kalan olasılıklarından birine ayarlar.

En büyük örnek için yaklaşık 2 dakika sürer.


bazı yerlerde boşluk yerine sekmeleri kullanarak bazı karakterleri kaybedebilir ve bazı şeyleri tek bir satıra birleştirebilirsiniz (örneğinprint(B);sys.exit(0)
Blazer

Ben hack ve hala çalışıyor, 1041 karakter aşağı var
Blazer

3

C # - 6601 5661 2225

using System;using System.Collections.Generic;using Google.OrTools.ConstraintSolver;
using System.Linq;namespace A{class N{public int R,C,Q;public bool F;public N(int r,
int c,int q){R=r;C=c;Q=q;}}class E{private static int i;public N A,B;public int I;
public E(N a,N b){A=a;B=b;I=i++;}}class H{public void G(string i){var o=P(i);var g=
new List<E>();foreach(var m in o){var r=o.Where(x=>x.R==m.R&&x.C>m.C).OrderBy(x=>x.C)
.FirstOrDefault();if(r!=null){g.Add(new E(m,r));}var d=o.Where(x=>x.C==m.C&&x.R>m.R)
.OrderBy(x=>x.R).FirstOrDefault();if(d!=null){g.Add(new E(m,d));}}var s=new Solver("H")
;int n=g.Count;var k=s.MakeIntVarArray(n,0,2);foreach(var j in o){var w=j;var y=g.Where
(x=>x.A==w||x.B== w).Select(x=>k[x.I]).ToArray();s.Add(s.MakeSumEquality(y,j.Q));}
foreach(var u in g.Where(x=>x.A.R==x.B.R)){var e=u;var v=g.Where(x=>x.A.R<e.A.R&&x.B.R
>e.A.R&&x.A.C>e.A.C&&x.A.C< e.B.C);foreach (var f in v){s.Add(s.MakeEquality(k[e.I]*k[f.
I],0));}}if(o.Count>2){foreach(var e in g.Where(x=>x.A.Q==2&&x.B.Q==2)){s.Add(k[e.I]<=1)
;}foreach(var e in g.Where(x=>x.A.Q==1&&x.B.Q==1)){s.Add(k[e.I]==0);}}var z=s.MakePhase
(k,0,0);s.NewSearch(z);int c=0;while(s.
NextSolution()){if(C(k,o,g)){N(k,o,g);Console.WriteLine();c++;}}Console.WriteLine(c);}
bool C(IntVar[]t,List<N>d,List<E>g){var a=d[0];a.F=true;var s=new Stack<N>();s.Push(a);
while(s.Any()){var n=s.Pop();foreach(var e in g.Where(x=>x.A==n||x.B==n)){var o=e.A==n?
e.B:e.A;if(t[e.I].Value()>0&&!o.F){o.F=true;s.Push(o);}}}bool r=d.All(x=>x.F);foreach
(var n in d){n.F=false;}return r;}void N(IntVar[]t,IList<N>n,List<E>e){var l=new 
List<char[]>();for(int i=0;i<=n.Max(x=>x.R);i++){l.Add(new string(' ',n.Max(x=>x.C)+1)
.ToCharArray());}foreach(var o in n){l[o.R][o.C]=o.Q.ToString()[0];N d=o;foreach(var 
g in e.Where(x=>x.A==d)){var v=t[g.I].Value();if(v>0){char p;int c;if(g.B.R==o.R){p=v==1
?'─':'═';c=o.C+1;var r=l[o.R];while(c<g.B.C){r[c]=p;c++;}}else{p=v==1?'│':'║';c=o.R+1;
while(c<g.B.R){l[c][o.C]=p;c++;}}}}}foreach(var r in l){Console.WriteLine(new string(r))
;}}List<N>P(string s){var n=new List<N>();int r=0;foreach(var l in s.Split(new[]{'\r',
'\n'},StringSplitOptions.RemoveEmptyEntries)){for(int c=0;c<l.Length;c++){if(l[c]!=' '
){n.Add(new N(r,c,l[c]-'0'));}}r++;}return n;}}}

Özellikle iyi golf değil. Google veya araçlardan kısıtlama programlama kitaplığı kullanır . Toplam kenar sayıları ve geçiş köprülerini ortadan kaldırmak için kısıtlamalar oluşturur, ancak hepsinin birbirine bağlı olduğundan emin olmak için kısıtlamaları tanımlamak biraz daha zordur. 2 = 2 ve 1-1 bileşenlerini budamak için mantık ekledim, ancak yine de son listeden (büyük olan 39) geçip tam olarak bağlı olmayanları ortadan kaldırmak zorundayım. Oldukça hızlı çalışır. En büyük örnekte sadece birkaç saniye sürer. Ungolfed:

using System;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;
using System.Linq;
namespace Hashi
{
    public class Node
    {
        public int Row, Col, Req;
        public bool Flag;

        public Node(int r, int c, int q)
        {
            Row = r;
            Col = c;
            Req = q;
        }
    }
    public class Edge
    {
        private static int idx = 0;
        public Node A, B;
        public int Index;
        public Edge(Node a, Node b)
        {
            A = a;
            B = b;
            Index = idx++;
        }
    }
    public class HashiSolver
    {
        public void Go(string input)
        {
            IList<Node> nodes = Parse(input);
            var edges = new List<Edge>();
            //add edges between nodes;
            foreach (var node in nodes)
            {
                var r = nodes.Where(x => x.Row == node.Row && x.Col > node.Col).OrderBy(x => x.Col).FirstOrDefault();
                if (r != null)
                {
                    edges.Add(new Edge(node, r));
                }
                var d = nodes.Where(x => x.Col == node.Col && x.Row > node.Row).OrderBy(x => x.Row).FirstOrDefault();
                if (d != null)
                {
                    edges.Add(new Edge(node, d));
                }
            }
            var solver = new Solver("Hashi");
            int n = edges.Count;
            var toSolve = solver.MakeIntVarArray(n, 0, 2);
            //add total node edge total constraints
            foreach (var node in nodes)
            {
                var node1 = node;
                var toConsider = edges.Where(x => x.A == node1 || x.B == node1).Select(x => toSolve[x.Index]).ToArray();
                solver.Add(solver.MakeSumEquality(toConsider, node.Req));
            }
            //add crossing edge constraints
            foreach (var ed in edges.Where(x => x.A.Row == x.B.Row))
            {
                var e = ed;
                var conflicts = edges.Where(x => x.A.Row < e.A.Row &&
                                                 x.B.Row > e.A.Row &&
                                                 x.A.Col > e.A.Col &&
                                                 x.A.Col < e.B.Col);
                foreach (var conflict in conflicts)
                {
                    solver.Add(solver.MakeEquality(toSolve[e.Index] * toSolve[conflict.Index], 0));
                }
            }
            if (nodes.Count > 2)
            {
                //remove 2=2 connections
                foreach (var e in edges.Where(x => x.A.Req == 2 && x.B.Req == 2))
                {
                    solver.Add(toSolve[e.Index] <= 1);
                }
                //remove 1-1 connections
                foreach (var e in edges.Where(x => x.A.Req == 1 && x.B.Req == 1))
                {
                    solver.Add(toSolve[e.Index] == 0);
                }
            }
            var db = solver.MakePhase(toSolve, Solver.INT_VAR_DEFAULT, Solver.INT_VALUE_DEFAULT);
            solver.NewSearch(db);
            int c = 0;
            while (solver.NextSolution())
            {
                if (AllConnected(toSolve, nodes, edges))
                {
                    Print(toSolve, nodes, edges);
                    Console.WriteLine();
                    c++;
                }
            }
            Console.WriteLine(c);
        }
        private bool AllConnected(IntVar[] toSolve, IList<Node> nodes, List<Edge> edges)
        {
            var start = nodes[0];
            start.Flag = true;
            var s = new Stack<Node>();
            s.Push(start);
            while (s.Any())
            {
                var n = s.Pop();
                foreach (var edge in edges.Where(x => x.A == n || x.B == n))
                {
                    var o = edge.A == n ? edge.B : edge.A;
                    if (toSolve[edge.Index].Value() > 0 && !o.Flag)
                    {
                        o.Flag = true;
                        s.Push(o);
                    }
                }
            }
            bool r = nodes.All(x => x.Flag);
            foreach (var n in nodes)
            {
                n.Flag = false;
            }
            return r;
        }
        private void Print(IntVar[] toSolve, IList<Node> nodes, List<Edge> edges)
        {
            var l = new List<char[]>();
            for (int i = 0; i <= nodes.Max(x => x.Row); i++)
            {
                l.Add(new string(' ', nodes.Max(x => x.Col) + 1).ToCharArray());
            }
            foreach (var node in nodes)
            {
                l[node.Row][node.Col] = node.Req.ToString()[0];
                Node node1 = node;
                foreach (var edge in edges.Where(x => x.A == node1))
                {
                    var v = toSolve[edge.Index].Value();
                    if (v > 0)
                    {
                        //horizontal
                        if (edge.B.Row == node.Row)
                        {
                            char repl = v == 1 ? '─' : '═';
                            int col = node.Col + 1;
                            var r = l[node.Row];
                            while (col < edge.B.Col)
                            {
                                r[col] = repl;
                                col++;
                            }
                        }
                        //vertical
                        else
                        {
                            char repl = v == 1 ? '│' : '║';
                            int row = node.Row + 1;
                            while (row < edge.B.Row)
                            {

                                l[row][node.Col] = repl;
                                row++;
                            }
                        }
                    }
                }
            }
            foreach (var r in l)
            {
                Console.WriteLine(new string(r));
            }
        }
        private IList<Node> Parse(string s)
        {
            var n = new List<Node>();
            int row = 0;
            foreach (var line in s.Split(new[] { '\r', '\n' }, StringSplitOptions.RemoveEmptyEntries))
            {
                for (int col = 0; col < line.Length; col++)
                {
                    if (line[col] != ' ')
                    {
                        n.Add(new Node(row, col, line[col] - '0'));
                    }
                }
                row++;
            }
            return n;
        }

    }
}
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.