Bir İnci Kolye Çekmek


18

genel bakış

İnci (veya Masyu) bir ızgara üzerinde oynanan bir mantık oyunudur. Izgara üzerine yerleştirilmiş siyah ve beyaz inciler vardır. Amaç,sadece düz çizgi parçaları ve dik açıları kullanarak her inciden geçen tek, kapalı bir halka oluşturmaktır.

Döngünün incilerle nasıl etkileşime girdiğini yöneten bazı kurallar vardır:

  • Beyaz inciler düz bir şekilde gezilmelidir, ancak döngü yolundaki önceki ve / veya sonraki hücreyi çevirmelidir .
  • Siyah inciler edilmelidir döndü üzerine, ancak döngü seyahat etmeliyim düz gelecek yoluyla ve yoluna çıkan önceki hücrelerden.
  • Döngü gerekir değil çapraz veya başka kendisi kesiştiği. Tüm hücreler tam olarak sıfır veya iki döngü giriş / çıkışına sahiptir.

Wikipedia'dan bir örnek bulmaca (ve çözümü):

resim açıklamasını buraya girin resim açıklamasını buraya girin

Hedefiniz verilen bir bulmacayı çözmek. Birden fazla olası çözüm varsa, hangisini verdiğiniz önemli değildir.

Giriş

Giriş, çözülmemiş kare bir ızgara olacaktır. Yukarıda gösterilen örnek şöyle görünecektir:

..w.w.....
....w...b.
..b.b.w...
...w..w...
b....w...w
..w....w..
..b...w...
w...b....w
......ww..
..b......b

wbeyaz bir inci, bsiyah bir inci ve .boş bir hücredir.

Girişin geçerli olduğunu varsayın. Bu, iyi oluşturulduğu ve en az bir çözümün mümkün olduğu anlamına gelir. Tüm geçerli bulmacalar en az 3x3'tür ve en az bir inci içerir.

Çıktı

Çıktı, yolu temsil eden bir koordinat dizesidir. Izgaranın üst sol köşesi 0 0üst sağ, n-1 0, burada n, ızgara genişliğidir.

Bir yol sadece bir dizi sıralı koordinattır:

x1 y1 x2 y2 x3 y3 ...

Yolun kapalı olduğu varsayılır, bu nedenle sonunda ilk koordinatı tekrarlamanız gerekmez , ancak bunun için herhangi bir ceza yoktur.

Çıktı yoldaki en az tüm köşelerden oluşmalıdır . Dönüş yoksa, yoldaki her hücrenin çıktısını almanız gerekmez. Örneğin, örneğin çıktısı şu şekilde başlayabilir:

1 0 5 0 5 1 ...

veya

1 0 2 0 3 0 4 0 5 0 5 1 ...

Çıktı gerektiği değil yolunda değil herhangi bir hücreyi içerir. Yoldaki herhangi bir hücrede başlayabilirsiniz.


Pasaj

İşte çözümünüzü görselleştirmek için kullanabileceğiniz bir pasaj. Sadece üzerinde çalıştığınız ızgarayı ve çıkardığınız yolu yapıştırın. Koduma bakmanın acı verici olduğunun farkındayım, bu yüzden yapmamanızı öneririm;)


Test Durumları

Bu test senaryoları, her bir giriş için bir olası çıkış gösterir (çözülmemiş olarak gösterilen son hariç). Başka geçerli yollar olabilir, CW veya CCW'ye gidebilir veya farklı bir noktada başlayabilirsiniz. Çözümler test vakalarını gün / hafta / eons değil saniye / dakika / saat olarak çözebilmelidir.

inci 3

...
w..
..b

0 0 1 0 2 0 2 1 2 2 1 2 0 2 0 1

inci-6

.wb..b
......
..b...
w.ww..
......
b....b

0 0 2 0 2 2 4 2 4 1 3 1 3 0 5 0 5 5 3 5 3 4 4 4 4 3 1 3 1 4 2 4 2 5 0 5 0 2 1 2 1 1 0 1

inci 12

.....w.b.w..
ww..b...b...
.w.....b....
...wbww..b.b
....b.......
w.w.........
..w......b.b
.....bb.....
.....b.....w
w.ww..b.....
...w......w.
b..w.....b..

Son test davası için çözüm
koymadınız

2
@ mbomb007 Doğru.
Geobits

Yani çözüm yok mu?
mbomb007

2
Bir çözümü var. Cevapları çabaları için gösterecek bir şey olacak şekilde açık bıraktım. Ayrıca, kurallar hakkında fikir edinmek için bir veya iki bulmacayı elle çözmek yardımcı olabilir ve tüm örnekler önceden çözülmüşse bunu yapmak zordur.
Geobits

İncilerin geçerli olmadığı düşünülen 2x2 veya daha büyük bir ızgara var mı (ikinci cümle değil, girişin çözülmemiş olduğu nokta (gerilmemiş inci yoksa çözülmelidir))? Eğer öyleyse, içinde inci olmayan bir döngü bekler misiniz, yoksa tam olarak ne? Muhtemelen belirli bir rengin mevcut olması gerekmiyor mu?
VisualMelon

Yanıtlar:


7

C, 590640760880963 1018

Kaba kuvvet bunun için oldukça hızlı. 12x12 testi 10 ms'nin altında çalışır. Bunun golf için daha uygun bir dili tercih edebileceğini bilmek.

Tahtanın kare olduğunu düşünmüyorum çünkü daha büyük bulmacalar kare olma eğilimindedir.

WSetleri tahta boyutları sınırı tanımlar. W - 2Sınır kontrollerinden kaçınmak için kenarlıklar için fazladan satır kullandığım için gerçek sınır daha küçük .

#define W 40
int Y,X,T,P,Q[W*W],D[]={-W,-1,1,W};char B[W*W],K[W*W],I[W];
t(x,d,s){for(P=0;B[x];x*=x!=*Q)s-=K[Q[P++]=x]-1,
d=(54202126527627840ll>>2*(d*7+B[x+=D[d]]%8))&3;return x?0:s;}
m(x){int c=K[x],u=B[x-W],U=u&7,l=B[x-1],L=l&7,r=0,
i=U!=3&U!=4&L!=2&L!=4,o=(39>>U)&1?57:70;o&=(52>>L)&1?42:85;
if(x/W>Y+1){for(;P--;)printf("%d %d ",Q[P]%W-1,Q[P]/W-1);exit(0);}
if(u>7)o&=U>4?~64:~6;if(l>7)o&=L>4?~32:~10;
for(o&=c?c>1?c>2?(r=8*i,96):(r=8,i*30):~0:1;o;r++,o/=2)
if(o&1)if(B[x]=r,r%8!=1||!t(x,0,T))m(x+1);B[x]=0;}
main(){for(;gets(I);Y++)for(X=0;I[X];X++)
T+=(K[X+1+Y*W+W]=I[X]/36)-1;m(W);}

Test et beni .

İşte daha zorlu bir test örneği:

.b.....b.b.......b..
.....w.....b.w....w.
....w.........w.....
..bb.....w.w.b....b.
.w.....b..b......w..
.....b..............
.b..........b.b..bw.
....w....w....b...w.
.......bb...b...w...
..b.......w.........
....b.w.....w.b...b.
w...b...w..b.w.w....
b.w....w............
...b.w......b..b...b
w......w.b.ww.......
.b....b..........b..
....b....w.bb.w...w.
w..b......w...b.....
b.....w.........w...
...b....w..w..b...w.
...................b
.b..w..bb.b..b..w...
........w......b....
b....w......b..b.b..
...b..bb.w.w........
...b.......w......w.
w...w.b.w.....b....b
............w..ww...
..b.b..b....b.......
....b.........w...b.
.ww.......b.w.w.....
b.....w..w.w...b....
....ww..b.b.w....w.w
.............bb..w..
.b....w.b.b........w
....bw..........b...

Kodum çözümü oldukça erken bulur (<5dk), ama tam arama çok daha uzun sürer (67dk) şanslıydım.

20x36


s / Kaba kuvvet oldukça hızlı / C oldukça hızlı /
kirbyfan64sos

9

Python - 1669

Yine de oldukça uzun, ancak son örneği bilgisayarımda bir saniyenin altında çalıştıracak kadar hızlı. Muhtemelen hız maliyetini kısaltmak mümkündür, ancak şimdilik bu çözümsüz koda eşdeğerdir.

Son test durumu için örnek çıktı:

0 11 1 11 2 11 3 11 4 11 4 10 3 10 2 10 1 10 1 9 2 9 3 9 4 9 4 8 3 8 3 7 4 7 5 7 5 6 5 5 6 5 6 6 6 7 7 7 8 7 8 8 7 8 6 8 5 8 5 9 5 10 5 11 6 11 6 10 6 9 7 9 8 9 8 10 7 10 7 11 8 11 9 11 9 10 9 9 10 9 10 10 10 11 11 11 11 10 11 9 11 8 11 7 10 7 10 8 9 8 9 7 9 6 10 6 11 6 11 5 11 4 11 3 10 3 9 3 9 4 9 5 8 5 8 4 8 3 8 2 8 1 9 1 10 1 10 0 9 0 8 0 7 0 7 1 7 2 6 2 5 2 5 1 6 1 6 0 5 0 4 0 3 0 2 0 2 1 3 1 4 1 4 2 4 3 5 3 6 3 7 3 7 4 6 4 5 4 4 4 4 5 4 6 3 6 3 5 3 4 3 3 3 2 2 2 2 3 1 3 1 2 1 1 1 0 0 0 0 1 0 2 0 3 0 4 0 5 0 6 1 6 1 5 1 4 2 4 2 5 2 6 2 7 1 7 1 8 0 8 0 9 0 10

resim açıklamasını buraya girin

Kod:

I=raw_input().split('\n');X=len(I[0]);Y=len(I);R=range
def S(g=0,c=0,x=0,y=0):
    if y>=Y:return 0
    if g==0:g=[[-1]*X for i in R(Y)];c=[[-1]*X for i in R(Y)]
    o={'.':set(R(7)),'w':{1,2},'b':{3,4,5,6}}[I[y][x]].copy()
    o&={0,1,3,4}if y<1 or g[y-1][x]in[0,1,5,6]else{2,5,6}
    o&={0,2,4,5}if x<1 or g[y][x-1]in[0,2,3,6]else{1,3,6}
    if y>Y-2:o&={0,1,5,6}
    if x>X-2:o&={0,2,3,6}
    if y>0 and g[y-1][x]in[2,3,4]:
        if'b'==I[y][x]and g[y-1][x]!=2:return 0
        if'b'==I[y-1][x]:o&={2}
        elif'w'==I[y-1][x]and g[y-2][x]==2:o&={5,6}
    if x>0 and g[y][x-1]in[1,4,5]:
        if'b'==I[y][x]and g[y][x-1]!=1:return 0
        if'b'==I[y][x-1]:o&={1}
        elif'w'==I[y][x-1]and g[y][x-2]==1:o&={3,6}
    h=[r[:]for r in c]
    if y>0 and g[y-1][x]in[2,3,4]:
        if x>0 and g[y][x-1]in[1,4,5]:
            if c[y-1][x]==c[y][x-1]:
                if(6 not in o)+any(any(i!=c[y-1][x]and i!=-1 for i in r)for r in c)+any(I[v][u]!='.'and(v>y)+(u>x)for v in R(y,Y)for u in R(X)):return 0
                g[y][x]=6
                for v in R(y,Y):
                    for u in R(X):
                        if v!=y or u>x:g[v][u]=0
                for y in R(Y):
                    for x in R(X):
                        if g[y][x]>0:break
                f=[];d=-1;u,v=p,q=x,y
                while(u,v)!=(p,q)or-1==d:f+=[u,v];d=([0,{0,2},{1,3},{2,3},{0,3},{0,1},{1,2}][g[v][u]]-{(d+2)%4}).pop();i,j={0:(u+1,v),1:(u,v-1),2:(u-1,v),3:(u,v+1)}[d];u,v=i,j
                return f
            else:
                for v in R(y+1):
                    for u in R(X):
                        if h[v][u]==c[y][x-1]:h[v][u]=c[y-1][x]
                h[y][x]=c[y-1][x]
        else:h[y][x]=c[y-1][x]
    elif x>0 and g[y][x-1]in[1,4,5]:h[y][x]=c[y][x-1]
    else:h[y][x]=max(max(r)for r in c)+1
    for n in sorted(list(o))[::-1]:
        if n==0:h[y][x]=-1
        if x>X-2:i,j=0,y+1
        else:i,j=x+1,y
        g[y][x]=n;r=S(g,h,i,j)
        if r!=0:return r
    return 0
for i in S():print i,

Ungolfed:

class Grid:
    def __init__(self,input):
        self.input = input.split('\n')
        self.x = len(self.input[0])
        self.y = len(self.input)
        self.options = {'.':{0,1,2,3,4,5,6},'w':{1,2},'b':{3,4,5,6}}

    def convert(self,grid):
        directions = [None,{0,2},{1,3},{2,3},{0,3},{0,1},{1,2}]

        for y in range(self.y):
            for x in range(self.x):
                if grid[y][x] != 0:
                    break

        chain = []
        start_pos = (x,y)
        dir = -1
        pos = start_pos
        while dir == -1 or pos != start_pos:
            chain.extend(pos)
            x,y = pos
            next_dir = (directions[grid[y][x]]-{(dir+2)%4}).pop()
            if next_dir == 0: nx,ny = x+1,y
            elif next_dir == 1: nx,ny = x,y-1
            elif next_dir == 2: nx,ny = x-1,y
            elif next_dir == 3: nx,ny = x,y+1
            dir = next_dir
            pos = (nx,ny)

        return chain

    def solve(self,grid=None,chain_ids=None,pos=(0,0)):
        x,y = pos
        if y >= self.y:
            return None

        if grid is None:
            grid = [[-1]*self.x for i in range(self.y)]
        if chain_ids is None:
            chain_ids = [[-1]*self.x for i in range(self.y)]

        options = self.options[self.input[y][x]].copy()
        if y == 0 or grid[y-1][x] in [0,1,5,6]:
            options &= {0,1,3,4}
        else:
            options &= {2,5,6}
        if y == self.y-1:
            options &= {0,1,5,6}

        if x == 0 or grid[y][x-1] in [0,2,3,6]:
            options &= {0,2,4,5}
        else:
            options &= {1,3,6}
        if x == self.x-1:
            options &= {0,2,3,6}

        if y != 0 and grid[y-1][x] in [2,3,4]:
            if self.input[y][x] == 'b' and grid[y-1][x] != 2:
                return None
            if self.input[y-1][x] == 'b':
                options &= {2}
            elif self.input[y-1][x] == 'w':
                if grid[y-2][x] == 2:
                    options &= {5,6}
        if x != 0 and grid[y][x-1] in [1,4,5]:
            if self.input[y][x] == 'b' and grid[y][x-1] != 1:
                return None
            if self.input[y][x-1] == 'b':
                options &= {1}
            elif self.input[y][x-1] == 'w':
                if grid[y][x-2] == 1:
                    options &= {3,6}


        new_chain_ids = [[i for i in row] for row in chain_ids]
        if y != 0 and grid[y-1][x] in [2,3,4]:
            if x != 0 and grid[y][x-1] in [1,4,5]:

                if chain_ids[y-1][x] == chain_ids[y][x-1]:
                    if 6 not in options:
                        return None

                    if any(any(i != chain_ids[y-1][x] and i != -1 for i in row) for row in chain_ids) or \
                    any(self.input[v][u] != '.' and (v!=y or u>x) for v in range(y,self.y) for u in range(self.x)):
                        return None

                    grid[y][x] = 6
                    for v in range(y,self.y):
                        for u in range(self.x):
                            if v != y or u > x: 
                                grid[v][u] = 0

                    return self.convert(grid)

                else:
                    for v in range(y+1):
                        for u in range(self.x):
                            if new_chain_ids[v][u] == chain_ids[y][x-1]:
                                new_chain_ids[v][u] = chain_ids[y-1][x]
                    new_chain_ids[y][x] = chain_ids[y-1][x]

            else:
                new_chain_ids[y][x] = chain_ids[y-1][x]
        elif x != 0 and grid[y][x-1] in [1,4,5]:
            new_chain_ids[y][x] = chain_ids[y][x-1]
        else:
            new_chain_ids[y][x] = max(max(row) for row in chain_ids)+1

        for n in sorted(list(options),key=lambda n: -n):
            grid[y][x] = n
            if n == 0:
                new_chain_ids[y][x] = -1

            if x == self.x-1:
                nx,ny = 0,y+1
            else:
                nx,ny = x+1,y

            result = self.solve(grid,new_chain_ids,(nx,ny))
            if result is not None:
                return result

input = """

.....w.b.w..
ww..b...b...
.w.....b....
...wbww..b.b
....b.......
w.w.........
..w......b.b
.....bb.....
.....b.....w
w.ww..b.....
...w......w.
b..w.....b..

""".strip()

def print_grid(grid):
    for y,row in enumerate(grid):
        s = ""
        for i in row:
            s += {-1:'xxx',0:'   ',1:'   ',2:' | ',3:'   ',4:'   ',5:' | ',6:' | '}[i]
        s += '\n'
        for x,i in enumerate(row):
            s += {-1:'x%sx',0:' %s ',1:'-%s-',2:' %s ',3:'-%s ',4:' %s-',5:' %s-',6:'-%s '}[i] % input.split('\n')[y][x]
        s += '\n'
        for i in row:
            s += {-1:'xxx',0:'   ',1:'   ',2:' | ',3:' | ',4:' | ',5:'   ',6:'   '}[i]
        s += '\n'
        print s

result = Grid(input).solve()
print result

@Geobits Oh, kuralları yeterince dikkatli okumadım. Şimdi doğru olduğuna inandığım cevap güncellendi
KSab

Yeni yol bana iyi geliyor! +1
Geobits

1

Lua, 830 810 765 752 739 729 710

Board1 ve board2'yi iyi çalışır, ancak board3'te biraz zaman alır.

Sadece ilk yol yerine her yolu çıkararak 9 bayt tasarruf edebilir ...

b={}s={0,0,0}R=table.insert Z=unpack for l in io.lines()do w=#l for i=1,w do
c=({b=1,w=2,['.']=3})[l:sub(i,i)]R(b,c)s[c]=s[c]+1 end end h=#b/w for e=0,w*h-1
do function g(p,d,X,t)local function G(I,r)T={Z(t)}a=b[I+1]T[a]=T[a]+1
P={Z(p)}D={Z(d)}R(P,I%w)R(P,I/w-I/w%1)R(D,r)l=#D for U=2,#p,2 do if
I==p[U-1]+w*p[U]then return end end if I==e then if T[1]==s[1]and T[2]==s[2]then
for k=1,l do K=D[k]M=D[(k-2)%l+1]N=D[k%l+1]O=D[(k+1)%l+1]if({K==N or K~=M or
N~=O,K~=N or(K==M and N==O)})[b[1+P[2*k-1]+w*P[2*k]]]then return end end
os.exit(print(table.concat(P,' ')))end else g(P,D,I,T)end end _=X%w<w-1 and
G(X+1,1)_=X/w-X/w%1<h-1 and G(X+w,2)_=X%w>0 and G(X-1,3)_=X/w-X/w%1>0 and
G(X-w,4)end g({},{},e,{0,0,0})end
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.