Matrix özelliği X yeniden ziyaret edildi (veya X Sevinci)


11

Bu zorluk kısmen bir algoritma zorluğu, kısmen bir optimizasyon zorluğu ve kısmen de en hızlı kod zorluğudur.

AT matrisi, ilk satırı rve ilk sütunu ile tamamen belirtilir c. Matrisin kalan her öğesi, çapraz olarak yukarı ve sol olan öğenin yalnızca bir kopyasıdır. Öyle M[i,j] = M[i-1,j-1]. Kare olmayan T matrislerine izin vereceğiz. Bununla birlikte, her zaman satır sayısının sütun sayısından fazla olmadığını varsayıyoruz. Örneğin, aşağıdaki 3'e 5 T matrisini düşünün.

10111
11011
11101

Aynı (vektör) toplamı aynı olmayan indeksleri olan boş olmayan iki sütun kümesi içeriyorsa, bir matrisin X özelliğine sahip olduğunu söylüyoruz. Bir veya daha fazla sütunun vektör toplamı, basitçe sütunlarının element bazında bir toplamıdır. Bu, xher biri element içeren iki veya daha fazla sütunun toplamıdır x. Bir sütunun toplamı önemsiz olarak sütunun kendisidir.

İlk ve son sütunlar aynı olduğundan yukarıdaki matris önemsiz bir şekilde X özelliğine sahiptir. Kimlik matrisinin asla X özelliği yoktur.

Yukarıdaki matrisin son sütununu kaldırırsak, X özelliğine sahip olmayan ve 4/3 puan verecek bir örnek alırız.

1011
1101
1110

Görev

Görev, ikili girişleri olan ve X özelliği olmayan en yüksek puanlama T matrisini bulmak için kod yazmaktır . Açıklık için, ikili girişleri olan bir matris, girişlerinin her birinin 0 veya 1 olması özelliğine sahiptir.

Puan

Puanınız, sayı sütunlarının en iyi puanlama matrisinizdeki satır sayısına bölünmesiyle elde edilir.

Kravat Kırıcı

İki cevap aynı puana sahipse, gönderilen cevap ilk kazanır.

Birinin sınırsız puan almak için bir yöntem bulması (çok) olası bir durumda, böyle bir çözümün ilk geçerli kanıtı kabul edilecektir. Sonlu bir matrisin en iyiliğinin bir kanıtı bulabileceğiniz daha da olası olmayan bir olayda elbette kazanmayı da ödüllendireceğim.

İpucu

X özelliği olmayan en yüksek puanlama matrisini bul'daki tüm cevaplar burada geçerlidir, ancak optimal değildir. X özelliği olmayan, döngüsel olmayan T matrisleri vardır.

Örneğin, X özelliği olmayan bir 7 x 12 T matrisi vardır, ancak böyle bir siklik matris yoktur.

21/11, bundan ve önceki zorluktan gelen tüm güncel cevapları yenecektir.

Diller ve kütüphaneler

Serbestçe kullanılabilen bir derleyici / tercüman / vb. Olan herhangi bir dili kullanabilirsiniz. Linux ve Linux için serbestçe bulunan tüm kütüphaneler için.

Bonus 2 puandan fazla olan ilk cevap, anında 200 puan ödül kazanır . Ton Hospel bunu başardı!


Mevcut liderlik kurulu

  • C ++ . Ton Hospel tarafından 31/15 puan
  • Java . Puan 36/19 - Peter Taylor
  • Haskell . Skor 14/8 yapan alexander-brett

"Aynı olmayan indekslere sahip boş olmayan iki sütun kümesi" derken birbirinden ayrık iki sütun kümesi mi demek istersiniz? Veya bunu yeniden ifade etmek için, {1, 3}, {1, 5} geçerli iki sütun alt grubu mu?
pawel.boczarski

@ pawel.boczarski Ayrık değil. Sadece aynı değil. Dolayısıyla {1, 3}, {1, 5} geçerlidir.

Tamam. Peki M [i, 1] - M [i-1] 'in son sütunundan "ödünç alınır" (sıfır geçerli bir matris sütun dizini değildir)? Ve aslında bu "yukarı ve sağ" yerine "yukarı ve sol" dur.
pawel.boczarski

@ pawel.boczarski "doğru" bir yazım hatasıydı. Teşekkürler. İlk satır ve sütun istediğiniz gibi ayarlanabilir. Matrisin geri kalanını tanımlarlar. senin sorunun cevabı bu mu?

Tamam anladım. İlk sütunun da tanımlanmış olduğunu dikkatlice okumam benim hatamdı.
pawel.boczarski

Yanıtlar:


6

C ++, Puan 23/12 25/13 27/14 28/14 31/15

Sonunda> 2 oranına sahip bir sonuç:

rows=15,cols=31
1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 
1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 
1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 
1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 
1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 
0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 
0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 
1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 
0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 
0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 
0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 
1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 
0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 
0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 
1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 

Tamamen 1 ila 14 satır inceledim. 15 tamamen keşfetmek çok uzun sürecekti. Sonuçlar:

1/1   = 1
2/2   = 1
4/3   = 1.333
5/4   = 1.25
7/5   = 1.4
9/6   = 1.5
12/7  = 1.714
14/8  = 1.75
16/9  = 1.778
18/10 = 1.8
20/11 = 1.818
23/12 = 1.917
25/13 = 1.923
28/14 = 2

Aşağıda verilen kod, programın eski bir sürümüdür. En yeni sürüm https://github.com/thospel/personal-propertyX adresindedir .

/*
  Compile using something like:
    g++ -Wall -O3 -march=native -fstrict-aliasing -std=c++11 -g propertyX.cpp -lpthread -o propertyX
*/
#include <cstdint>
#include <climits>
#include <ctgmath>
#include <iostream>
#include <vector>
#include <array>
#include <chrono>
#include <mutex>
#include <atomic>
#include <thread>

using namespace std;

const int ELEMENTS = 2;

using uint    = unsigned int;
using Element = uint64_t;
using Column  = array<Element, ELEMENTS>;
using Set     = vector<Column>;
using Sum     = uint8_t;
using Index   = uint32_t;
using sec = chrono::seconds;

int const PERIOD = 5*60;
int const MAX_ROWS = 54;
int const COL_FACTOR = (MAX_ROWS+1) | 1;                // 55
int const ROW_ZERO   = COL_FACTOR/2;                    // 27
int const ROWS_PER_ELEMENT = CHAR_BIT * sizeof(Element) / log2(COL_FACTOR); //11
Element constexpr ELEMENT_FILL(Element v = ROW_ZERO, int n = ROWS_PER_ELEMENT) {
    return n ? ELEMENT_FILL(v, n-1) * COL_FACTOR + v : 0;
}
Element constexpr POWN(Element v, int n) {
    return n ? POWN(v, n-1)*v : 1;
}
Element const ELEMENT_TOP = POWN(COL_FACTOR, ROWS_PER_ELEMENT -1);
int const MAX_COLS = ROWS_PER_ELEMENT * ELEMENTS;       // 22

atomic<Index> col_next;
atomic<uint>  period;
chrono::steady_clock::time_point start;
mutex period_mutex;

uint ratio_row;
uint ratio_col;
mutex ratio_mutex;

auto const nr_threads = thread::hardware_concurrency();
// auto const nr_threads = 1;

struct State {
    State(uint cols);
    void process(Index i);
    void extend(uint row);
    void print(uint rows);
    Index nr_columns() const { return static_cast<Index>(1) << cols_; }

    Column last_;
    Element top_;
    int top_offset_;
    uint ratio_row_ = 0;
    uint ratio_col_ = 1;
    uint cols_;
    array<Sum, MAX_ROWS + MAX_COLS -1> side;
    vector<Set> sets;
};

ostream& operator<<(ostream& os, Column const& column) {
    for (int i=0; i<ELEMENTS; ++i) {
        auto v = column[i];
        for (int j=0; j<ROWS_PER_ELEMENT; ++j) {
            auto bit = v / ELEMENT_TOP;
            cout << " " << bit;
            v -= bit * ELEMENT_TOP;
            v *= COL_FACTOR;
        }
    }
    return os;
}

State::State(uint cols) : cols_{cols} {
    sets.resize(MAX_ROWS+2);
    for (int i=0; i<2; ++i) {
        sets[i].resize(2);
        for (int j=0; j < ELEMENTS; ++j) {
            sets[i][0][j] =  ELEMENT_FILL();
            sets[i][1][j] =  static_cast<Element>(-1) - ELEMENT_FILL(1);
        }
    }
    top_ = POWN(COL_FACTOR, (cols_-1) % ROWS_PER_ELEMENT);
    top_offset_ = ELEMENTS - 1 - (cols_-1) / ROWS_PER_ELEMENT;
}

void State::print(uint rows) {
    for (auto c=0U; c<cols_;c++) {
        for (auto r=0U; r<rows;r++) {
            cout << static_cast<int>(side[cols_-c+r-1]) << " ";
        }
        cout << "\n";
    }
    cout << "----------" << endl;
}

void check(uint cols, uint t) {
    State state(cols);

    Index nr_columns = state.nr_columns();
    while (1) {
        Index col = col_next++;
        if (col >= nr_columns) break;
        state.process(col);

        auto now = chrono::steady_clock::now();
        auto elapsed = chrono::duration_cast<sec>(now-start).count();
        if (elapsed >= period) {
            lock_guard<mutex> lock{period_mutex};
            if (elapsed >= period) {
                cout << "col=" << col << "/" << nr_columns << " (" << 100.*col/nr_columns << "% " << elapsed << " s)" << endl;
                period = (elapsed/PERIOD+1)*PERIOD;
            }
        }
    }
}

void State::process(Index col) {
    last_.fill(0);
    for (uint i=0; i<cols_; ++i) {
        Element bit = col >> i & 1;
        side[i] = bit;
        Element carry = 0;
        for (int j=0; j<ELEMENTS; ++j) {
            auto c = last_[j] % COL_FACTOR;
            last_[j] = last_[j] / COL_FACTOR + carry * ELEMENT_TOP;
            if (j == top_offset_ && bit) last_[j] += top_;
            carry = c;
        }
    }
    // cout << "col=" << col << ", value=" << last_ << "\n";
    extend(0);
}

void State::extend(uint row) {
    // cout << "Extend row " << row << " " << static_cast<int>(side[cols_+row-1]) << "\n";
    if (row >= MAX_ROWS) throw(range_error("row out of range"));

    // Execute subset sum. The new column is added to set {from} giving {to}
    // {sum} is the other set.
    auto const& set_from = sets[row];
    auto const& set_sum  = sets[row + 1];
    auto      & set_to   = sets[row + 2];
    if (set_to.size() == 0) {
        auto size = 3 * set_from.size() - 2;
        set_to.resize(size);
        for (int j=0; j<ELEMENTS; ++j)
            set_to[size-1][j] = static_cast<Element>(-1) - ELEMENT_FILL(1);
    }

    // Merge sort {set_from - last_} , {set_from} and {set_from + last_}
    auto ptr_sum    = &set_sum[1][0];
    auto ptr_low    = &set_from[0][0];
    auto ptr_middle = &set_from[0][0];
    auto ptr_high   = &set_from[0][0];
    Column col_low, col_high;
    for (int j=0; j<ELEMENTS; ++j) {
        col_low   [j] = *ptr_low++  - last_[j];
        col_high  [j] = *ptr_high++ + last_[j];
    }

    auto ptr_end = &set_to[set_to.size()-1][0];
    auto ptr_to  = &set_to[0][0];
    while (ptr_to < ptr_end) {
        for (int j=0; j<ELEMENTS; ++j) {
            if (col_low[j] < ptr_middle[j]) goto LOW;
            if (col_low[j] > ptr_middle[j]) goto MIDDLE;
        }
        // low == middle
        // cout << "low == middle\n";
        return;

      LOW:
        // cout << "LOW\n";
        for (int j=0; j<ELEMENTS; ++j) {
            if (col_low[j] < col_high[j]) goto LOW0;
            if (col_low[j] > col_high[j]) goto HIGH0;
        }
        // low == high
        // cout << "low == high\n";
        return;

      MIDDLE:
        // cout << "MIDDLE\n";
        for (int j=0; j<ELEMENTS; ++j) {
            if (ptr_middle[j] < col_high[j]) goto MIDDLE0;
            if (ptr_middle[j] > col_high[j]) goto HIGH0;
        }
        // middle == high
        // cout << "middle == high\n";
        return;

      LOW0:
        // cout << "LOW0\n";
        for (int j=0; j<ELEMENTS; ++j) {
            *ptr_to++  = col_low[j];
            col_low[j] = *ptr_low++ - last_[j];
        }
        goto SUM;

      MIDDLE0:
        // cout << "MIDDLE0\n";
        for (int j=0; j<ELEMENTS; ++j)
            *ptr_to++ = *ptr_middle++;
        goto SUM;

      HIGH0:
        // cout << "HIGH0\n";
        for (int j=0; j<ELEMENTS; ++j) {
            *ptr_to++ = col_high[j];
            col_high[j] = *ptr_high++ + last_[j];
        }
        goto SUM;
      SUM:
        for (int j=-ELEMENTS; j<0; ++j) {
            if (ptr_to[j] > ptr_sum[j]) {
                ptr_sum += ELEMENTS;
                goto SUM;
            }
            if (ptr_to[j] < ptr_sum[j]) goto DONE;
        }
        // sum == to
        for (int j=-ELEMENTS; j<0; ++j)
            if (ptr_to[j] != ELEMENT_FILL()) {
                // sum == to and to != 0
                // cout << "sum == to\n";
                // cout << set_sum[(ptr_sum - &set_sum[0][0])/ELEMENTS-1] << "\n";
                return;
            }
      DONE:;
    }
    // cout << "Wee\n";
    auto row1 = row+1;
    if (0)
        for (uint i=0; i<row1+2; ++i) {
            cout << "Set " << i << "\n";
            auto& set = sets[i];
            for (auto& column: set)
                cout << column << "\n";
        }

    if (row1 * ratio_col_ > ratio_row_ * cols_) {
        ratio_row_ = row1;
        ratio_col_ = cols_;
        lock_guard<mutex> lock{ratio_mutex};

        if (ratio_row_ * ratio_col > ratio_row * ratio_col_) {

            auto now = chrono::steady_clock::now();
            auto elapsed = chrono::duration_cast<sec>(now-start).count();
            cout << "cols=" << cols_ << ",rows=" << row1 << " (" << elapsed << " s)\n";
            print(row1);
            ratio_row = ratio_row_;
            ratio_col = ratio_col_;
        }
    }

    auto last = last_;

    Element carry = 0;
    for (int j=0; j<ELEMENTS; ++j) {
        auto c = last_[j] % COL_FACTOR;
        last_[j] = last_[j] / COL_FACTOR + carry * ELEMENT_TOP;
        carry = c;
    }

    side[cols_+row] = 0;
    extend(row1);

    last_[top_offset_] += top_;
    side[cols_+row] = 1;
    extend(row1);

    last_ = last;
}

void my_main(int argc, char** argv) {
    if (!col_next.is_lock_free()) cout << "col_next is not lock free\n";
    if (!period.  is_lock_free()) cout << "period is not lock free\n";

    int min_col = 2;
    int max_col = MAX_COLS;
    if (argc > 1) {
        min_col = atoi(argv[1]);
        if (min_col < 2)
            throw(range_error("Column must be >= 2"));
        if (min_col > MAX_COLS)
            throw(range_error("Column must be <= " + to_string(MAX_COLS)));
    }
    if (argc > 2) {
        max_col = atoi(argv[2]);
        if (max_col < min_col)
            throw(range_error("Column must be >= " + to_string(min_col)));
        if (max_col > MAX_COLS)
            throw(range_error("Column must be <= " + to_string(MAX_COLS)));
    }

    for (int cols = min_col; cols <= max_col; ++cols) {
        cout << "Trying " << cols << " columns" << endl;
        ratio_row = 0;
        ratio_col = 1;
        col_next = 0;
        period = PERIOD;
        start = chrono::steady_clock::now();
        vector<thread> threads;
        for (auto t = 1U; t < nr_threads; t++)
            threads.emplace_back(check, cols, t);
        check(cols, 0);
        for (auto& thread: threads)
            thread.join();
    }
}

int main(int argc, char** argv) {
    try {
        my_main(argc, argv);
    } catch(exception& e) {
        cerr << "Error: " << e.what() << endl;
        exit(EXIT_FAILURE);
    }
    exit(EXIT_SUCCESS);
}

Bu harika. Büyük gizem hiç 2 puanı alabilirsen.

Ekstrapolasyonla, 28/14 mevcut olmalı, bence bu gerçekten heyecan verici olurdu. Ama sadece ulaşılamıyor mu?

n = 14, 8 çekirdekli işlemcimdeki mevcut kodumla yaklaşık 200 gün sürecekti. Kod muhtemelen% 30 kadar hızlandırılabilir. Bundan sonra fikirlerim bitti. Ve ekstrapolasyonunuz yine de oldukça iyimser görünüyor ...
Ton Hospel

Bence birinci sıra 01011011100010111101000001100111110011010100011010 ile 50 x 25 matrisi çalışabilir. Bu, yararlı olabilecek bir optimizasyon buluşsal yöntemi ile bulunmuştur.

N = 14'ün kapsamlı kapsamı için 140 saat çok etkileyici olduğunu söylemeliyim.

2

Haskell 14/8 = 1,75

1 1 0 0 0 1 0 1 1 0 1 1 0 0
1 1 1 0 0 0 1 0 1 1 0 1 1 0
0 1 1 1 0 0 0 1 0 1 1 0 1 1
1 0 1 1 1 0 0 0 1 0 1 1 0 1
0 1 0 1 1 1 0 0 0 1 0 1 1 0
0 0 1 0 1 1 1 0 0 0 1 0 1 1
0 0 0 1 0 1 1 1 0 0 0 1 0 1
0 0 0 0 1 0 1 1 1 0 0 0 1 0

Daha önce 9/6 = 1.5

1 0 1 0 1 1 0 0 1
1 1 0 1 0 1 1 0 0
1 1 1 0 1 0 1 1 0
1 1 1 1 0 1 0 1 1
1 1 1 1 1 0 1 0 1
1 1 1 1 1 1 0 1 0

Bunu yazdım, sonra diğer sorunun cevaplarına baktım ve ... cesaretim kırıldı.

import Data.List
import Data.Hashable
import Control.Monad
import Control.Parallel.Strategies
import Control.Parallel
import qualified Data.HashSet as S

matrix§indices = [ matrix!!i | i<-indices ]

powerset :: [a] -> [[a]]
powerset = filterM (const [True, False])

hashNub :: (Hashable a, Eq a) => [a] -> [a]
hashNub l = go S.empty l
    where
      go _ []     = []
      go s (x:xs) = if x `S.member` s
        then go s xs
        else x : go (S.insert x s) xs

getMatrix :: Int -> Int -> [Int] -> [[Int]]
getMatrix width height vector = [ vector § [x..x+width-1] | x<-[0..height-1] ]

hasDuplicate :: (Hashable a, Eq a) => [a] -> Bool
hasDuplicate m = go S.empty m
    where
        go _ [] = False
        go s (x:xs) = if x `S.member` s
            then True
            else go (S.insert x s) xs

hasProperty :: [[Int]] -> Bool
hasProperty matrix =
    let
        base = replicate (length (matrix !! 0)) 0::[Int]
    in
        if elem base matrix then
            False
        else
            if hasDuplicate matrix then
                False
            else
                if hasDuplicate (map (foldl (zipWith (+)) base) (powerset matrix)) then
                    False
                else
                    True


pmap = parMap rseq

matricesWithProperty :: Int -> Int -> [[[Int]]]
matricesWithProperty n m =
    let
        base = replicate n 0::[Int]
    in
    filter (hasProperty) $
    map (getMatrix n m) $
    sequence [ [0,1] | x<-[0..n+m-1] ]

firstMatrixWithProperty :: Int -> Int -> [[Int]]
firstMatrixWithProperty n m = head $ matricesWithProperty n m

main = mapM (putStrLn. show) $ map (firstMatrixWithProperty 8) [1..]

Teşekkür ederim! Haskell yanıtı her zaman memnuniyetle karşılanır. Bence ilk ilginç durum 12/7. Bunu alabilir misin?

Çift çekirdekli 2009 dizüstü bilgisayarda çalışıyordum, bu yüzden hayır :) Yine de daha hızlı bir makinede tekrar deneyeceğim
alexander-brett

Çok hoş. Az önce 21 / 11'in önceki tüm cevapları yeneceğine dair bir yorum ekledim.

Kodunuzun tam olarak ne çıkardığını açıklar mısınız?

Burada mainsayı (bu durumda 8) matrisin yüksekliğidir ve program genişliklerle yinelenir [1..]. Her yükseklik / genişlik kombinasyonu için, geçerli bir matrisin bir dizi sütununu yazdırır.
alexander-brett

1

C

İşte çalışan ve Haskell'den çok daha fazla bellek tasarruflu bir cevap. Ne yazık ki, bilgisayarım makul bir süre içinde 14/8'den daha iyi elde etmek için hala çok yavaş.

İle derlemeyi gcc -std=c99 -O2 -fopenmp -o matrices.exe matrices.cve bunlarla matrices.exe width heightbenzer şekilde çalışmayı deneyin . Çıktı, bir bit tam sayıdır, bitleri söz konusu matris için temel oluşturur, örneğin:

$ matrices.exe 8 14
...
valid i: 1650223

O zamandan beri 1650223 = 0b110010010111000101111, söz konusu matris:

0 0 1 1 1 0 1 0 0 1 0 0 1 1
0 ...
1 ...
0
1
1
1
1

8 çekirdeği ve zamanı ellerinde olan bir kişi bunu bir süre çalıştırmak istiyorsa, bence bazı iyi şeyler ortaya çıkabilir :)


#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

/*
 * BEGIN WIKIPEDIA CODE
 */
const long long m1  = 0x5555555555555555; //binary: 0101...
const long long m2  = 0x3333333333333333; //binary: 00110011..
const long long m4  = 0x0f0f0f0f0f0f0f0f; //binary:  4 zeros,  4 ones ...
const long long m8  = 0x00ff00ff00ff00ff; //binary:  8 zeros,  8 ones ...
const long long m16 = 0x0000ffff0000ffff; //binary: 16 zeros, 16 ones ...
const long long m32 = 0x00000000ffffffff; //binary: 32 zeros, 32 ones
const long long hff = 0xffffffffffffffff; //binary: all ones
const long long h01 = 0x0101010101010101; //the sum of 256 to the power of 0,1,2,3...
//This uses fewer arithmetic operations than any other known
//implementation on machines with fast multiplication.
//It uses 12 arithmetic operations, one of which is a multiply.
long long hamming(long long x) {
    x -= (x >> 1) & m1;             //put count of each 2 bits into those 2 bits
    x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits
    x = (x + (x >> 4)) & m4;        //put count of each 8 bits into those 8 bits
    return (x * h01)>>56;  //returns left 8 bits of x + (x<<8) + (x<<16) + (x<<24) + ...
}
/*
 * END WIKIPEDIA CODE
 */

int main ( int argc, char *argv[] ) {
    int height;
    int width;

    sscanf(argv[1], "%d", &height);
    sscanf(argv[2], "%d", &width);

    #pragma omp parallel for
    for (
        /*
         * We know that there are 2^(h+w-1) T-matrices, defined by the entries
         * in the first row and first column. We'll let the long long i
         * represent these entries, with 1s represented by set bits.
         *
         * The first (0) and last (1) matrix we will ignore.
         */
        long long i = 1;
        i < (1 << (height+width-1))-1;
        i++
    ) {
        // Flag for keeping track as we go along.
        int isvalid = 1;

        /*
         * Start by representing the matrix as an array of columns, with each
         * non-zero matrix entry as a bit. This allows us to construct them and
         * check equality very quickly.
         */
        long *cols = malloc(sizeof(long)*width);
        long colmask = (1 << height)-1;
        for (int j = 0; j < width; j++) {
            cols[j] = (i >> j) & colmask;
            if (cols[j] == 0) {
                //check no zero rows
                isvalid = 0;
            } else {
                //check no duplicate rows
                for (int k = 0; k < j; k++) {
                    if (cols[j] == cols[k]) {
                        isvalid = 0;
                    }
                }
            }
        }

        if (isvalid == 1) {
            /*
             * We'll also represent the matrix as an array of rows, in a
             * similar manner.
             */
            long *rows = malloc(sizeof(long)*height);
            long rowmask = (1 << width)-1;
            for (int j = 0; j < height; j++) {
                rows[j] = (i >> j) & rowmask;
            }

            int *sums[(1 << width)];
            for (long j = 0; j < 1<<width; j++) {
                sums[j] = (int*)malloc(sizeof(int)*height);
            }

            for (
                /*
                 * The powerset of columns has size 2^width. Again with the
                 * long; this time each bit represents whether the
                 * corresponding row is a member of the subset. The nice thing
                 * about this is we can xor the permutation with each row,
                 * then take the hamming number of the resulting number to get
                 * the sum.
                 */
                long permutation = 1;
                (isvalid == 1) && (permutation < (1 << width)-1);
                permutation ++
            ) {
                for (int j = 0; j < height; j++) {
                    sums[permutation][j] = hamming( rows[j] & permutation);
                }
                for (int j = permutation-1; (isvalid == 1) && (j > -1); j--) {
                    if (memcmp(sums[j], sums[permutation], sizeof(int)*height) == 0) {
                        isvalid = 0;
                    }
                }
            }

            for (long j = 0; j < 1<<width; j++) {
                free(sums[j]);
            }

            free(rows);

        }

        if (isvalid == 1) {
            printf ("valid i: %ld\n", i);
        }

        free(cols);
    }

    return 0;
}

Alexander-brett.c: 'main' işlevinde: alexander-brett.c: 107: 21: uyarı: 'memcmp' işlevinin örtülü bildirimi [-Wimplicit-function-declaration] if (memcmp (sums [j], toplamlar [permütasyon], sizeof (int) * height) == 0) {^ alexander-brett.c: 122: 13: uyarı: format '% ld' 'long int' türünde argüman bekliyor, ancak 2 argümanı 'türüne sahip' uzun uzun int '[-Wformat =] printf ("geçerli i:% ld \ n", i);

./Alexander-brett 8 14 sizin için ne kadar sürer?

Merhaba Lembik, 8 14 dört çekirdekli makinede benim için bir saatte 5 cevap aldı. Pencerelerde bu başlıkları derlemeyi başardım, memcmp kaybolursa garip olurdu ...
alexander-brett


Kodunuzu 7 12 ile denedim ve çıktılarından biri valid i: 7481. Python bin (7481) 'de yeterince uzun olmayan 0b1110100111001'dir. Neler olup bittiği hakkında bir fikrin var mı?
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.