Mathematica, 2535 bayt
Alındığı burada (dolayısıyla neden 's topluluk wiki). Gerçekten o golfed. Yazarın kodunu açıklaması için sağlanan bağlantıyı görüntüleyin.
Ayrıca, ben Mathematica uzmanı değilim, ama eminim Martin kod uzunluğunda mucizeler yapabilir. Arkasındaki matematiği bile anlamıyorum.
Okunabilir halde bıraktım, ancak soru kapanmazsa, okunabilirliği geçerek golf oynatacağım ve arayan fonksiyon içindeki diğer 2 parametreyi taşıyacağım.
Şu anda geçersiz , geliştirmeye yardımcı olmaktan çekinmeyin:
HyperbolicLine[{{Px_, Py_}, {Qx_, Qy_}}] :=
If[N[Chop[Px Qy - Py Qx]] =!= 0.,
Circle[OrthoCentre[{{Px, Py}, {Qx, Qy}}],
OrthoRadius[{{Px, Py}, {Qx, Qy}}],
OrthoAngles[{{Px, Py}, {Qx, Qy}}]], Line[{{Px, Py}, {Qx, Qy}}]]
OrthoCentre[{{Px_, Py_}, {Qx_, Qy_}}] :=
With[{d = 2 Px Qy - 2 Py Qx, p = 1 + Px^2, q = 1 + Qx^2 + Qy^2},
If[N[d] =!= 0., {p Qy + Py^2 Qy - Py q, -p Qx - Py^2 Qx + Px q}/d,
ComplexInfinity]]
OrthoRadius[{{Px_, Py_}, {Qx_, Qy_}}] :=
If[N[Chop[Px Qy - Py Qx]] =!= 0.,
Sqrt[Total[OrthoCentre[{{Px, Py}, {Qx, Qy}}]^2] - 1], Infinity]
OrthoAngles[{{Px_, Py_}, {Qx_, Qy_}}] :=
Block[{a, b, c = OrthoCentre[{{Px, Py}, {Qx, Qy}}]},
If[(a = N[Apply[ArcTan, {Px, Py} - c]]) < 0., a = a + 2 \[Pi]];
If[(b = N[Apply[ArcTan, {Qx, Qy} - c]]) < 0.,
b = b + 2 \[Pi]]; {a, b} = Sort[{a, b}];
If[b - a > \[Pi], {b, a + 2 \[Pi]}, {a, b}]]
Inversion[Circle[{Cx_, Cy_}, r_], {Px_, Py_}] := {Cx, Cy} +
r^2 {Px - Cx, Py - Cy}/((Cx - Px)^2 + (Cy - Py)^2)
Inversion[Circle[{Cx_, Cy_}, r_, {a_, b_}], {Px_, Py_}] := {Cx, Cy} +
r^2 {Px - Cx, Py - Cy}/((Cx - Px)^2 + (Cy - Py)^2)
Inversion[Circle[{Cx_, Cy_}, r_, {a_, b_}], p_Line] :=
Map[Inversion[Circle[{Cx, Cy}, r], #] &, p, {2}]
Inversion[Circle[{Cx_, Cy_}, r_, {a_, b_}], p_Polygon] :=
Map[Inversion[Circle[{Cx, Cy}, r], #] &, p, {2}]
Inversion[Line[{{Px_, Py_}, {Qx_, Qy_}}], {Ux_, Uy_}] :=
With[{u = Px - Qx,
v = Qy - Py}, {-Ux (v^2 - u^2) - 2 u v Uy,
Uy (v^2 - u^2) - 2 u v Ux}/(u^2 + v^2)]
Inversion[Line[{{Px_, Py_}, {Qx_, Qy_}}], p_Polygon] :=
Map[Inversion[Line[{{Px, Py}, {Qx, Qy}}], #] &, p, {2}]
Inversion[Circle[{Cx_, Cy_}, r_], c_List] :=
Map[Inversion[Circle[{Cx, Cy}, r], #] &, c]
PolygonInvert[p_Polygon] :=
Map[Inversion[HyperbolicLine[#], p] &,
Partition[Join[p[[1]], {p[[1, 1]]}], 2, 1]]
PolygonInvert[p_List] := Flatten[Map[PolygonInvert[#] &, p]]
LineRule = Polygon[x_] :> Line[Join[x, {x[[1]]}]];
HyperbolicLineRule =
Polygon[x_] :>
Map[HyperbolicLine, Partition[Join[x, {x[[1]]}], 2, 1]];
CentralPolygon[p_Integer, q_Integer, \[Phi]_: 0] :=
With[{r = (Cot[\[Pi]/p] Cot[\[Pi]/q] - 1)/
Sqrt[Cot[\[Pi]/p]^2 Cot[\[Pi]/q]^2 - 1], \[Theta] = \[Pi] Range[
1, 2 p - 1, 2]/p},
r Map[{{Cos[\[Phi]], -Sin[\[Phi]]}, {Sin[\[Phi]], Cos[\[Phi]]}}.# &,
Transpose[{Cos[\[Theta]], Sin[\[Theta]]}]]]
PolygonUnion[p_Polygon, tol_: 10.^-10] := p
PolygonUnion[p_List, tol_: 10.^-10] :=
With[{q = p /. Polygon[x_] :> N[Polygon[Round[x, 10.^-10]]]},
DeleteDuplicates[q]]
HyperbolicTessellation[p_Integer, q_Integer, \[Phi]_, k_Integer,
t_: 10.^-10] :=
Map[PolygonUnion[#, t] &,
NestList[PolygonInvert, Polygon[CentralPolygon[p, q, \[Phi]]],
k][[{-2, -1}]]] /; k > 0
HyperbolicTessellation[p_Integer, q_Integer, \[Phi]_, k_Integer,
t_: 10.^-10] := Polygon[CentralPolygon[p, q, \[Phi]]] /; k == 0
HyperbolicTessellationGraphics[p_Integer, q_Integer, \[Phi]_,
k_Integer, rule_RuleDelayed, opts___] :=
Graphics[{Circle[{0, 0}, 1],
HyperbolicTessellation[p, q, \[Phi], k, 10.^-10] /. rule}, opts]
Şöyle denir:
HyperbolicTessellationGraphics[3, 7, 0., 7, HyperbolicLineRule, ImageSize -> 300, PlotLabel -> "{7,7}"]