Clock , beceri gerektirmediği için ilginç bir kart oyunudur. Tek oyunculu bir oyundur ve aynı kart konfigürasyonu her zaman bir kazanma veya kaybetmeye yol açar. Bu meydan okumada, belirli bir kart yapılandırmasının kazanıp kazanmayacağını veya kaybetip kaybetmeyeceğini bulmanız gerekir . Sen edebilirsiniz burada oyun oynamak .
Oyun şu şekilde oynanır:
- On üç kart yığını kapalı olarak dağıtılır. Her yığın 0 ila 12 arasında numaralandırılmıştır.
- 0. yığını mevcut yığın olarak ayarladık
- Mevcut yığının üst kartını yüzü yukarı gelecek şekilde çeviriyoruz.
- Yüzü yukarı kartını ilgili yığının altına doğru hareket ettiriyoruz (4 kart 4. yığının altına gidiyor) . Kart kapalı olarak kalır. Bu yığın mevcut yığın olur.
- Mevcut yığın tamamen yukarı dönükse, oyun biter. Aksi takdirde, 3. adıma geri dönün.
İpucu: Oyun her zaman 0. yığınla sona erecek
Tüm kartlar açık olarak bitirilirse oyun kazanılır ve açık kapalı kartlar varsa kaybedilir.
Giriş çıkış
Kazıkların her birini içeren bir 2B dizi. Kartlar 0 ila 12 arasında sayılarla temsil edilir (takım elbise ilgisizdir ve verilmez). Her yığının üst kartı, her dizinin ilk öğesidir.
Girişin iyi oluşturulacağını varsayabilirsiniz: 0 ila 12 (dahil) arasında 52 kart içerecek ve her bir sayıyı tam olarak 4 kez içerecektir.
Eğer oyun kazanılabiliyorsa gerçek bir değer ve yapamıyorsanız yanlıştır.
Test senaryoları
Doğru:
[[11, 11, 7, 7], [8, 6, 5, 0], [2, 10, 9, 1], [12, 3, 0, 6], [8, 7, 4, 8], [3, 10, 5, 12], [11, 7, 1, 10], [3, 1, 6, 0], [2, 3, 0, 6], [5, 10, 5, 4], [12, 9, 11, 2], [9, 4, 12, 4], [1, 9, 8, 2]]
[[0, 9, 4, 8], [1, 4, 11, 3], [10, 12, 4, 0], [5, 9, 11, 5], [7, 0, 11, 2], [6, 5, 6, 0], [5, 7, 6, 7], [1, 10, 3, 4], [10, 11, 12, 3], [9, 9, 3, 6], [12, 12, 2, 1], [1, 8, 8, 2], [7, 2, 10, 8]]
[[11, 11, 9, 5], [3, 0, 1, 7], [6, 2, 9, 4], [6, 9, 11, 2], [10, 9, 6, 1], [12, 8, 10, 0], [2, 3, 12, 3], [3, 12, 5, 11], [4, 1, 8, 12], [7, 0, 2, 5], [4, 1, 10, 4], [7, 10, 6, 5], [8, 8, 0, 7]]
[[2, 3, 4, 11], [6, 12, 5, 9], [11, 0, 5, 9], [1, 8, 0, 12], [11, 9, 5, 8], [12, 7, 1, 0], [10, 3, 1, 11], [3, 12, 7, 2], [2, 7, 1, 5], [6, 3, 4, 10], [10, 10, 9, 8], [6, 2, 4, 4], [6, 8, 0, 7]]
[[1, 2, 12, 9], [5, 6, 4, 11], [0, 0, 7, 10], [9, 7, 12, 0], [12, 1, 8, 6], [10, 1, 4, 8], [9, 2, 6, 11], [10, 12, 1, 8], [6, 7, 0, 3], [2, 2, 5, 5], [8, 11, 9, 3], [4, 7, 3, 10], [5, 11, 4, 3]]
[[8, 12, 5, 3], [3, 10, 0, 6], [4, 11, 2, 12], [6, 1, 1, 12], [7, 6, 5, 0], [0, 8, 8, 7], [4, 8, 1, 2], [2, 3, 11, 6], [11, 10, 5, 2], [10, 1, 9, 4], [12, 5, 9, 7], [7, 3, 10, 9], [9, 0, 11, 4]]
[[3, 4, 8, 7], [2, 2, 8, 9], [12, 7, 0, 4], [4, 7, 10, 11], [5, 10, 3, 11], [10, 9, 8, 7], [5, 2, 11, 8], [6, 0, 3, 10], [9, 1, 4, 12], [12, 3, 12, 6], [2, 5, 1, 1], [6, 11, 5, 1], [6, 9, 0, 0]]
[[11, 9, 11, 1], [1, 3, 2, 8], [3, 3, 6, 5], [8, 11, 7, 4], [9, 4, 5, 1], [6, 4, 12, 6], [12, 10, 8, 7], [3, 9, 10, 0], [2, 8, 11, 9], [2, 4, 1, 0], [12, 5, 6, 0], [10, 7, 10, 2], [5, 0, 12, 7]]
[[9, 9, 6, 5], [7, 5, 11, 9], [8, 12, 3, 7], [1, 2, 4, 10], [11, 3, 3, 10], [2, 0, 12, 11], [4, 7, 12, 9], [3, 6, 11, 1], [1, 10, 12, 0], [5, 6, 8, 0], [4, 10, 2, 5], [8, 8, 1, 6], [0, 7, 2, 4]]
[[4, 0, 7, 11], [1, 5, 2, 10], [2, 9, 10, 0], [4, 12, 1, 9], [10, 12, 7, 0], [9, 4, 1, 8], [6, 6, 9, 12], [5, 3, 6, 2], [11, 3, 6, 4], [7, 3, 5, 5], [11, 8, 1, 11], [10, 7, 2, 8], [8, 12, 0, 3]]
Falsy:
[[8, 1, 6, 1], [7, 9, 0, 12], [11, 12, 12, 12], [11, 5, 9, 3], [2, 10, 9, 7], [11, 2, 0, 8], [0, 10, 4, 6], [8, 0, 4, 2], [6, 5, 3, 8], [4, 10, 3, 1], [5, 11, 9, 6], [7, 5, 1, 4], [2, 7, 3, 10]]
[[1, 4, 4, 6], [3, 11, 1, 2], [8, 5, 10, 12], [7, 10, 7, 5], [12, 8, 3, 7], [4, 0, 12, 12], [1, 1, 9, 6], [8, 7, 5, 10], [11, 0, 11, 0], [5, 10, 3, 11], [3, 2, 9, 8], [9, 6, 0, 2], [2, 6, 9, 4]]
[[10, 1, 10, 7], [12, 3, 11, 4], [0, 5, 10, 7], [5, 11, 1, 3], [6, 6, 9, 4], [9, 0, 8, 6], [9, 12, 7, 10], [1, 6, 3, 9], [0, 5, 0, 2], [4, 8, 1, 11], [7, 12, 11, 3], [8, 2, 2, 2], [8, 4, 12, 5]]
[[3, 8, 0, 6], [11, 5, 3, 9], [11, 6, 1, 0], [3, 7, 3, 10], [6, 10, 1, 8], [11, 12, 1, 12], [8, 11, 7, 7], [1, 8, 2, 0], [9, 4, 0, 10], [10, 2, 12, 12], [7, 4, 4, 2], [9, 4, 5, 5], [6, 2, 9, 5]]
[[0, 1, 9, 5], [0, 1, 11, 9], [12, 12, 7, 6], [3, 12, 9, 4], [2, 10, 3, 1], [6, 2, 3, 2], [8, 11, 8, 0], [7, 4, 8, 11], [11, 8, 10, 6], [7, 5, 3, 6], [0, 10, 9, 10], [1, 4, 7, 12], [5, 5, 2, 4]]
[[9, 8, 0, 6], [1, 1, 7, 8], [3, 2, 3, 7], [9, 10, 12, 6], [6, 12, 12, 10], [11, 4, 0, 5], [10, 11, 10, 7], [5, 3, 8, 8], [1, 2, 11, 4], [0, 5, 6, 0], [5, 9, 2, 4], [4, 2, 3, 11], [9, 1, 12, 7]]
[[4, 3, 5, 7], [1, 9, 1, 3], [7, 9, 12, 5], [9, 0, 5, 2], [7, 2, 11, 9], [1, 6, 6, 4], [11, 0, 6, 4], [3, 0, 8, 10], [2, 10, 5, 3], [10, 11, 8, 12], [8, 1, 12, 0], [7, 12, 11, 2], [10, 6, 8, 4]]
[[9, 5, 11, 11], [7, 7, 8, 5], [1, 2, 1, 4], [11, 11, 12, 9], [0, 12, 0, 3], [10, 6, 5, 4], [4, 5, 6, 8], [10, 9, 7, 3], [12, 6, 1, 3], [0, 4, 10, 8], [2, 0, 1, 12], [3, 9, 2, 6], [2, 7, 8, 10]]
[[4, 1, 5, 7], [7, 12, 6, 2], [0, 11, 10, 5], [10, 0, 0, 6], [10, 1, 6, 8], [12, 7, 2, 5], [3, 3, 8, 12], [3, 6, 9, 1], [10, 9, 8, 4], [3, 9, 2, 4], [11, 1, 4, 7], [11, 5, 2, 12], [0, 8, 11, 9]]
[[3, 11, 0, 1], [6, 1, 7, 12], [9, 8, 0, 2], [9, 6, 11, 8], [10, 5, 2, 5], [12, 10, 9, 5], [4, 9, 3, 6], [7, 2, 10, 7], [12, 6, 2, 8], [10, 8, 4, 7], [11, 3, 4, 5], [12, 11, 1, 0], [1, 3, 0, 4]]