Minimum Kelime Arama


18

Geçen hafta, İngilizce dilinde en iyi 10.000 kelimeyi kullanarak en kısa 1 boyutlu dizeyi oluşturmaya çalıştık . Şimdi, aynı meydan okumayı 2D olarak deneyelim!

Yapmanız gereken yukarıdaki kelimelerin hepsini almak ve çakışmalara izin vermek için onları mümkün olduğunca küçük bir dikdörtgene koymaktır. Örneğin, kelimeleriniz olsaydı, ["ape","pen","ab","be","pa"]olası bir dikdörtgen şöyle olurdu:

.b..
apen

Yukarıdaki dikdörtgen 5 puan verecektir.

Kurallar:

  • Bir sözcükteki birden çok harfe çakışmaya izin verilir
  • Kelimeler 8 yönden herhangi birine gidebilir
  • Kelimeler etrafına dolamaz
  • Boş yerler için herhangi bir karakteri kullanabilirsiniz

Bu en iyi 10.000 kelimeyi İngilizce (Google'a göre) içeren bir kelime araması oluşturmanız gerekir . Puanınız kelime aramanızdaki karakter sayısına eşittir (kullanılmayan karakterler hariç). Beraberlik varsa veya bir başvurunun optimal olduğu kanıtlanırsa, ilk gönderilen sunum kazanır.


1
Bu önceki kelime arama mücadelesinin farkında olduğumu belirtmek isterim , ancak cevapların hiçbirinin bu zorluk için makul bir süre içinde çalışmayacağı göz önüne alındığında, bunun bir kopyası olduğuna inanmıyorum.
Nathan Merrill


En uygun çözümün bir nx 1 ızgarası olacağından korkuyorum, bu problemi en sonuncusu ile aynı hale getiriyorum (akıl yürütme: teğet kavşaklar nadiren birçok karakteri kurtaracak, ancak genellikle "delikler", alan israfına neden olacak). Belki bunu genişlik * yükseklik yerine genişlik + yükseklikte puanlandırmalısınız, böylece kare çözümleri (daha ilginç) kuvvetle tercih eder.
Dave

Hmmm ... Çözümlerin, birbirlerinin üzerine yığılmış kelime dizeleri olacağından korkuyorum. Boş yerlere puan vermemek iyi bir fikir olabilir
Nathan Merrill

Bunun riski, ızgara boyutunu küçük tutmaya gerek olmamasıdır; yayılan yatay ve dikey listeye sahip 1000x1000 ızgara, sıkılmış spiral desen / benzeri ile aynı puanı verecektir. Belki width + height, sonra tie-break-blanks'ı tie-breaker olarak deneyin? Biraz daha düşünmeye ihtiyaç duyabilir. Düzenleme: veya ilk önce harfler-hariç-boşluklar sonra genişlik + yükseklik bir kravat kırıcı daha iyi çalışır gibi.
Dave

Yanıtlar:


7

Rust, 31430 30081 karakter kullanılmış

Bu, açgözlü bir algoritmadır: boş bir ızgara ile başlıyoruz ve en az yeni harfle eklenebilecek kelimeyi tekrar tekrar ekliyoruz, bağlar daha uzun kelimeleri tercih ederek kırılıyor. Bunu hızlı bir şekilde yapmak için, aday kelime yerleşimlerinin öncelik sırasını koruyoruz (her bir kelime uzunluğu için bir deque içeren her yeni harf sayısı için bir vektörle, deque vektörlerinin bir vektörü olarak uygulanır). Yeni eklenen her harf için, bu harften geçen tüm aday yerleşimleri sıralarız.

Derleyin ve çalıştırın rustc -O wordsearch.rs; ./wordsearch < google-10000-english.txt. Dizüstü bilgisayarımda, bu 531 MiB RAM kullanarak 70 saniye içinde çalışıyor.

Çıktı 248 sütun ve 253 satır içeren bir dikdörtgene sığar.

resim açıklamasını buraya girin

kod

use std::collections::{HashMap, HashSet, VecDeque};
use std::io::prelude::*;
use std::iter::once;
use std::vec::Vec;

type Coord = i16;
type Pos = (Coord, Coord);
type Dir = u8;
type Word = u16;

struct Placement { word: Word, dir: Dir, pos: Pos }

static DIRS: [Pos; 8] =
    [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)];

fn fit(grid: &HashMap<Pos, u8>, (x, y): Pos, d: Dir, word: &String) -> Option<usize> {
    let (dx, dy) = DIRS[d as usize];
    let mut n = 0;
    for (i, c) in word.bytes().enumerate() {
        if let Some(c1) = grid.get(&(x + (i as Coord)*dx, y + (i as Coord)*dy)) {
            if c != *c1 {
                return None;
            }
        } else {
            n += 1;
        }
    }
    return Some(n)
}

struct PlacementQueue { queue: Vec<Vec<VecDeque<Placement>>>, extra: usize }

impl PlacementQueue {
    fn new() -> PlacementQueue {
        return PlacementQueue { queue: Vec::new(), extra: std::usize::MAX }
    }

    fn enqueue(self: &mut PlacementQueue, extra: usize, total: usize, placement: Placement) {
        while self.queue.len() <= extra {
            self.queue.push(Vec::new());
        }
        while self.queue[extra].len() <= total {
            self.queue[extra].push(VecDeque::new());
        }
        self.queue[extra][total].push_back(placement);
        if self.extra > extra {
            self.extra = extra;
        }
    }

    fn dequeue(self: &mut PlacementQueue) -> Option<Placement> {
        while self.extra < self.queue.len() {
            let mut subqueue = &mut self.queue[self.extra];
            while !subqueue.is_empty() {
                let total = subqueue.len() - 1;
                if let Some(placement) = subqueue[total].pop_front() {
                    return Some(placement);
                }
                subqueue.pop();
            }
            self.extra += 1;
        }
        return None
    }
}

fn main() {
    let stdin = std::io::stdin();
    let all_words: Vec<String> =
        stdin.lock().lines().map(|l| l.unwrap()).collect();
    let words: Vec<&String> = {
        let subwords: HashSet<&str> =
            all_words.iter().flat_map(|word| {
                (0..word.len() - 1).flat_map(move |i| {
                    (i + 1..word.len() - (i == 0) as usize).map(move |j| {
                        &word[i..j]
                    })
                })
            }).collect();
        all_words.iter().filter(|word| !subwords.contains(&word[..])).collect()
    };
    let letters: Vec<Vec<(usize, usize)>> =
        (0..128).map(|c| {
            words.iter().enumerate().flat_map(|(w, word)| {
                word.bytes().enumerate().filter(|&(_, c1)| c == c1).map(move |(i, _)| (w, i))
            }).collect()
        }).collect();

    let mut used = vec![false; words.len()];
    let mut remaining = words.len();
    let mut grids: Vec<HashMap<Pos, u8>> = Vec::new();

    while remaining != 0 {
        let mut grid: HashMap<Pos, u8> = HashMap::new();
        let mut queue = PlacementQueue::new();
        for (w, word) in words.iter().enumerate() {
            if used[w] {
                continue;
            }
            queue.enqueue(0, word.len(), Placement {
                pos: (0, 0),
                dir: 0,
                word: w as Word
            });
        }

        while let Some(placement) = queue.dequeue() {
            if used[placement.word as usize] {
                continue;
            }
            let word = words[placement.word as usize];
            if let None = fit(&grid, placement.pos, placement.dir, word) {
                continue;
            }
            let (x, y) = placement.pos;
            let (dx, dy) = DIRS[placement.dir as usize];
            let new_letters: Vec<(usize, u8)> = word.bytes().enumerate().filter(|&(i, _)| {
                !grid.contains_key(&(x + (i as Coord)*dx, y + (i as Coord)*dy))
            }).collect();
            for (i, c) in word.bytes().enumerate() {
                grid.insert((x + (i as Coord)*dx, y + (i as Coord)*dy), c);
            }
            used[placement.word as usize] = true;
            remaining -= 1;

            for (i, c) in new_letters {
                for &(w1, j) in &letters[c as usize] {
                    if used[w1] {
                        continue;
                    }
                    let word1 = words[w1];
                    for (d1, &(dx1, dy1)) in DIRS.iter().enumerate() {
                        let pos1 = (
                            x + (i as Coord)*dx - (j as Coord)*dx1,
                            y + (i as Coord) - (j as Coord)*dy1);
                        if let Some(extra1) = fit(&grid, pos1, d1 as Dir, word1) {
                            queue.enqueue(extra1, word1.len(), Placement {
                                pos: pos1,
                                dir: d1 as Dir,
                                word: w1 as Word
                            });
                        }
                    }
                }
            }
        }
        grids.push(grid);
    }

    let width = grids.iter().map(|grid| {
        grid.iter().map(|(&(x, _), _)| x).max().unwrap() -
            grid.iter().map(|(&(x, _), _)| x).min().unwrap() + 1
    }).max().unwrap();
    print!(
        "{}",
        grids.iter().flat_map(|grid| {
            let x0 = grid.iter().map(|(&(x, _), _)| x).min().unwrap();
            let y0 = grid.iter().map(|(&(_, y), _)| y).min().unwrap();
            let y1 = grid.iter().map(|(&(_, y), _)| y).max().unwrap();
            (y0..y1 + 1).flat_map(move |y| {
                (x0..x0 + width).map(move |x| {
                    *grid.get(&(x, y)).unwrap_or(&('.' as u8)) as char
                }).chain(once('\n').take(1))
            })
        }).collect::<String>()
    );
}

Kodu henüz okumadım, ancak doğrusal olmayan yerleşimleri teşvik etmek için herhangi bir şey yapıyor musunuz? Bunun gibi bir algoritmanın bir dizi süper dizeyi geçmesini beklerdim, ancak oldukça iyi bir alan dolduruyor gibi görünüyor.
Dave

@Dave Özel bir şey yok, sadece bu şekilde çalışıyor. Süper dizeler asla o kadar uzun sürmez ki, daha iyi doğrusal olmayan yerleşimler asla bulunamaz, çünkü muhtemelen aralarından seçim yapabileceğiniz çok daha fazla doğrusal olmayan yerleşim vardır.
Anders Kaseorg

"Tebrikler" ile başlar, "olağanüstü" ile biter
YOU

Ben de köşegen olabileceğini yakalamadım. resim için teşekkürler. Kod blokları hakkında yorum yapmak isteyip istemediğimi bilmiyorum. :)
Titus

4

C ++, 27243 karakter ızgarası (248x219,% 50,2 dolu)

(Bunu yeni bir cevap olarak yayınlamak, çünkü referans olarak yayınladığım 1D'yi bağlı tutmak istiyorum)

Bu bariz şekilde koparmak @ AndersKaseorg'un ana yapısındaki cevabından büyük ölçüde ilham alıyor , ancak birkaç ince ayar var . İlk olarak, mevcut en iyi çakışma sadece 3 karakter olana kadar dizeleri birleştirmek için orijinal programımı kullanıyorum. Sonra AndersKaseorg bu oluşturulan dizeleri kullanarak aşamalı bir 2B ızgara doldurmak için açıkladığı yöntemi kullanın. Kısıtlamalar da biraz farklı: hala her seferinde en az karakter eklemeye çalışıyor, ancak bağlar önce kare ızgaraları, sonra küçük ızgaraları ve son olarak en uzun kelimeyi ekleyerek kopuyor.

Gösterdiği davranış, boşluk doldurma ve ızgarayı hızlı bir şekilde genişletme süreleri arasında geçiş yapmaktır (maalesef hızlı bir genişleme aşamasından hemen sonra kelimeler tükenmiştir, bu nedenle kenarlarda çok fazla boş alan vardır). % 50 boşluk doldurma daha iyi almak için yapılabilir maliyet fonksiyonu bazı tweaking ile şüpheleniyorum.

Burada 2 yürütülebilir dosya vardır (algoritmayı yinelemeli olarak iyileştirirken tüm süreci yeniden çalıştırma ihtiyacından kaçınmak için). Birinin çıktısı doğrudan diğerine bağlanabilir:

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <cstdlib>

std::size_t calcOverlap(const std::string &a, const std::string &b, std::size_t limit, std::size_t minimal) {
    std::size_t la = a.size();
    for(std::size_t p = std::min(std::min(la, b.size()), limit + 1); -- p > minimal; ) {
        if(a.compare(la - p, p, b, 0, p) == 0) {
            return p;
        }
    }
    return 0;
}

bool isSameReversed(const std::string &a, const std::string &b) {
    std::size_t l = a.size();
    if(b.size() != l) {
        return false;
    }
    for(std::size_t i = 0; i < l; ++ i) {
        if(a[i] != b[l-i-1]) {
            return false;
        }
    }
    return true;
}

int main(int argc, const char *const *argv) {
    // Usage: prog [<stop_threshold>]

    std::size_t stopThreshold = 3;

    if(argc >= 2) {
        char *check;
        long v = std::strtol(argv[1], &check, 10);
        if(check == argv[1] || v < 0) {
            std::cerr
                << "Invalid stop threshold. Should be an integer >= 0"
                << std::endl;
            return 1;
        }
        stopThreshold = v;
    }

    std::vector<std::string> words;

    // Load all words from input and their reverses (words can be backwards now)
    while(true) {
        std::string word;
        std::getline(std::cin, word);
        if(word.empty()) {
            break;
        }
        words.push_back(word);
        std::reverse(word.begin(), word.end());
        words.push_back(std::move(word));
    }

    std::cerr
        << "Input word count: " << words.size() << std::endl;

    // Remove all fully subsumed words

    for(auto p = words.begin(); p != words.end(); ) {
        bool subsumed = false;
        for(auto i = words.begin(); i != words.end(); ++ i) {
            if(i == p) {
                continue;
            }
            if(i->find(*p) != std::string::npos) {
                subsumed = true;
                break;
            }
        }
        if(subsumed) {
            p = words.erase(p);
        } else {
            ++ p;
        }
    }

    std::cerr
        << "After subsuming checks: " << words.size()
        << std::endl;

    // Sort words longest-to-shortest (not necessary but doesn't hurt. Makes finding maxlen a tiny bit easier)
    std::sort(words.begin(), words.end(), [](const std::string &a, const std::string &b) {
        return a.size() > b.size();
    });

    std::size_t maxlen = words.front().size();

    // Repeatedly combine most-compatible words until we reach the threshold
    std::size_t bestPossible = maxlen - 1;
    while(words.size() > 2) {
        auto bestA = words.begin();
        auto bestB = -- words.end();
        std::size_t bestOverlap = 0;
        for(auto p = ++ words.begin(), e = words.end(); p != e; ++ p) {
            if(p->size() - 1 <= bestOverlap) {
                continue;
            }
            for(auto q = words.begin(); q != p; ++ q) {
                std::size_t overlap = calcOverlap(*p, *q, bestPossible, bestOverlap);
                if(overlap > bestOverlap && !isSameReversed(*p, *q)) {
                    bestA = p;
                    bestB = q;
                    bestOverlap = overlap;
                }
                overlap = calcOverlap(*q, *p, bestPossible, bestOverlap);
                if(overlap > bestOverlap && !isSameReversed(*p, *q)) {
                    bestA = q;
                    bestB = p;
                    bestOverlap = overlap;
                }
            }
            if(bestOverlap == bestPossible) {
                break;
            }
        }
        if(bestOverlap <= stopThreshold) {
            break;
        }
        std::string newStr = std::move(*bestA);
        newStr.append(*bestB, bestOverlap, std::string::npos);

        if(bestA == -- words.end()) {
            words.pop_back();
            *bestB = std::move(words.back());
            words.pop_back();
        } else {
            *bestB = std::move(words.back());
            words.pop_back();
            *bestA = std::move(words.back());
            words.pop_back();
        }

        // Remove any words which are now in the result (forward or reverse)
        // (would not be necessary if we didn't have the reversed forms too)
        std::string newRev = newStr;
        std::reverse(newRev.begin(), newRev.end());
        for(auto p = words.begin(); p != words.end(); ) {
            if(newStr.find(*p) != std::string::npos || newRev.find(*p) != std::string::npos) {
                std::cerr << "Now subsumes: " << *p << std::endl;
                p = words.erase(p);
            } else {
                ++ p;
            }
        }

        std::cerr
            << "Words remaining: " << (words.size() + 1)
            << " Latest combination: (" << bestOverlap << ") " << newStr
            << std::endl;

        words.push_back(std::move(newStr));
        words.push_back(std::move(newRev));
        bestPossible = bestOverlap; // Merging existing words will never make longer merges possible
    }

    std::cerr
        << "After merging: " << words.size()
        << std::endl;

    // Remove all fully subsumed words (i.e. reversed words)

    for(auto p = words.begin(); p != words.end(); ) {
        bool subsumed = false;
        std::string rev = *p;
        std::reverse(rev.begin(), rev.end());
        for(auto i = words.begin(); i != words.end(); ++ i) {
            if(i == p) {
                continue;
            }
            if(i->find(*p) != std::string::npos || i->find(rev) != std::string::npos) {
                subsumed = true;
                break;
            }
        }
        if(subsumed) {
            p = words.erase(p);
        } else {
            ++ p;
        }
    }

    std::cerr
        << "After subsuming: " << words.size()
        << std::endl;

    // Sort words longest-to-shortest for display
    std::sort(words.begin(), words.end(), [](const std::string &a, const std::string &b) {
        return a.size() > b.size();
    });

    std::size_t len = 0;
    for(const auto &word : words) {
        std::cout
            << word
            << std::endl;
        len += word.size();
    }
    std::cerr
        << "Total size: " << len
        << std::endl;
    return 0;
}
#include <iostream>
#include <string>
#include <vector>
#include <unordered_map>
#include <unordered_set>
#include <limits>

class vec2 {
public:
    int x;
    int y;

    vec2(void) : x(0), y(0) {};
    vec2(int x, int y) : x(x), y(y) {}

    bool operator ==(const vec2 &b) const {
        return x == b.x && y == b.y;
    }

    vec2 &operator +=(const vec2 &b) {
        x += b.x;
        y += b.y;
        return *this;
    }

    vec2 &operator -=(const vec2 &b) {
        x -= b.x;
        y -= b.y;
        return *this;
    }

    vec2 operator +(const vec2 b) const {
        return vec2(x + b.x, y + b.y);
    }

    vec2 operator *(const int b) const {
        return vec2(x * b, y * b);
    }
};

class box2 {
public:
    vec2 tl;
    vec2 br;

    box2(void) : tl(), br() {};
    box2(vec2 a, vec2 b)
        : tl(std::min(a.x, b.x), std::min(a.y, b.y))
        , br(std::max(a.x, b.x) + 1, std::max(a.y, b.y) + 1)
    {}

    void grow(const box2 &b) {
        if(b.tl.x < tl.x) {
            tl.x = b.tl.x;
        }
        if(b.br.x > br.x) {
            br.x = b.br.x;
        }
        if(b.tl.y < tl.y) {
            tl.y = b.tl.y;
        }
        if(b.br.y > br.y) {
            br.y = b.br.y;
        }
    }

    bool intersects(const box2 &b) const {
        return (
            ((tl.x >= b.br.x) != (br.x > b.tl.x)) &&
            ((tl.y >= b.br.y) != (br.y > b.tl.y))
        );
    }

    box2 &operator +=(const vec2 b) {
        tl += b;
        br += b;
        return *this;
    }

    int width(void) const {
        return br.x - tl.x;
    }

    int height(void) const {
        return br.y - tl.y;
    }

    int maxdim(void) const {
        return std::max(width(), height());
    }
};

template <> struct std::hash<vec2> {
    std::size_t operator ()(const vec2 &o) const {
        return std::hash<int>()(o.x) + std::hash<int>()(o.y) * 997;
    }
};

template <class A,class B> struct std::hash<std::pair<A,B>> {
    std::size_t operator ()(const std::pair<A,B> &o) const {
        return std::hash<A>()(o.first) + std::hash<B>()(o.second) * 31;
    }
};

class word_placement {
public:
    vec2 start;
    vec2 dir;
    box2 bounds;
    const std::string *word;

    word_placement(vec2 start, vec2 dir, const std::string *word)
        : start(start)
        , dir(dir)
        , bounds(start, start + dir * (word->size() - 1))
        , word(word)
    {}

    word_placement(vec2 start, const word_placement &copy)
        : start(copy.start + start)
        , dir(copy.dir)
        , bounds(copy.bounds)
        , word(copy.word)
    {
        bounds += start;
    }

    word_placement(const word_placement &copy)
        : start(copy.start)
        , dir(copy.dir)
        , bounds(copy.bounds)
        , word(copy.word)
    {}
};

class word_placement_links {
public:
    std::unordered_set<word_placement*> placements;
    std::unordered_set<std::pair<char,word_placement*>> relativePlacements;
};

class grid {
public:
    std::vector<std::string> wordCache; // Just a block of memory for our pointers to reference
    std::unordered_map<vec2,char> state;
    std::unordered_set<word_placement*> placements;
    std::unordered_map<const std::string*,word_placement_links> wordPlacements;
    std::unordered_map<char,std::unordered_set<word_placement*>> relativeWordPlacements;
    box2 bound;

    grid(const std::vector<std::string> &words) {
        wordCache = words;
        std::vector<vec2> directions;
        directions.emplace_back(+1,  0);
        directions.emplace_back(+1, +1);
        directions.emplace_back( 0, +1);
        directions.emplace_back(-1, +1);
        directions.emplace_back(-1,  0);
        directions.emplace_back(-1, -1);
        directions.emplace_back( 0, -1);
        directions.emplace_back(+1, -1);

        wordPlacements.reserve(wordCache.size());
        placements.reserve(wordCache.size());
        relativeWordPlacements.reserve(64);

        std::size_t total = 0;
        for(const std::string &word : wordCache) {
            word_placement_links &p = wordPlacements[&word];
            p.placements.reserve(8);
            auto &rp = p.relativePlacements;
            std::size_t l = word.size();
            rp.reserve(l * directions.size());
            for(int i = 0; i < l; ++ i) {
                for(const vec2 &d : directions) {
                    word_placement *rwp = new word_placement(d * -i, d, &word);
                    rp.emplace(word[i], rwp);
                    relativeWordPlacements[word[i]].insert(rwp);
                }
            }
            total += l;
        }
        state.reserve(total);
    }

    const std::string *find_word(const std::string &word) const {
        for(const std::string &w : wordCache) {
            if(w == word) {
                return &w;
            }
        }
        throw std::string("Failed to find word in cache");
    }

    void remove_word(const std::string *word) {
        const word_placement_links &links = wordPlacements[word];
        for(word_placement *p : links.placements) {
            placements.erase(p);
            delete p;
        }
        for(auto &p : links.relativePlacements) {
            relativeWordPlacements[p.first].erase(p.second);
            delete p.second;
        }
        wordPlacements.erase(word);
    }

    void remove_placement(word_placement *placement) {
        wordPlacements[placement->word].placements.erase(placement);
        placements.erase(placement);
        delete placement;
    }

    bool check_placement(const word_placement &placement) const {
        vec2 p = placement.start;
        for(const char c : *placement.word) {
            auto i = state.find(p);
            if(i != state.end() && i->second != c) {
                return false;
            }
            p += placement.dir;
        }
        return true;
    }

    int check_new(const word_placement &placement) const {
        int n = 0;
        vec2 p = placement.start;
        for(const char c : *placement.word) {
            n += !state.count(p);
            p += placement.dir;
        }
        return n;
    }

    void check_placements(const box2 &b) {
        for(auto i = placements.begin(); i != placements.end(); ) {
            if(!b.intersects((*i)->bounds) || check_placement(**i)) {
                ++ i;
            } else {
                i = placements.erase(i);
            }
        }
    }

    void add_placement(const vec2 p, const word_placement &relative) {
        word_placement check(p, relative);
        if(check_placement(check)) {
            word_placement *wp = new word_placement(check);
            placements.insert(wp);
            wordPlacements[relative.word].placements.insert(wp);
        }
    }

    void place(word_placement placement) {
        remove_word(placement.word);
        int overlap = 0;
        for(const char c : *placement.word) {
            char &g = state[placement.start];
            if(g == '\0') {
                g = c;
                for(const word_placement *rp : relativeWordPlacements[c]) {
                    add_placement(placement.start, *rp);
                }
            } else if(g != c) {
                throw std::string("New word changes an existing character!");
            } else {
                ++ overlap;
            }
            placement.start += placement.dir;
        }
        bound.grow(placement.bounds);
        check_placements(placement.bounds);

        std::cerr
            << draw('.', "\n")
            << "Added " << *placement.word << " (overlap: " << overlap << ")"
            << ", Grid: " << bound.width() << "x" << bound.height() << " of " << state.size() << " chars"
            << ", Words remaining: " << wordPlacements.size()
            << std::endl;
    }

    int check_cost(box2 b) const {
        b.grow(bound);
        return (
            ((b.maxdim() - bound.maxdim()) << 16) |
            (b.width() + b.height() - bound.width() - bound.height())
        );
    }

    void add_next(void) {
        int bestNew = std::numeric_limits<int>::max();
        int bestCost = std::numeric_limits<int>::max();
        int bestLen = 0;
        word_placement *best = nullptr;
        for(word_placement *p : placements) {
            int n = check_new(*p);
            if(n <= bestNew) {
                int l = p->word->size();
                int cost = check_cost(box2(p->start, p->start + p->dir * l));
                if(n < bestNew || cost < bestCost || (cost == bestCost && l < bestLen)) {
                    bestNew = n;
                    bestCost = cost;
                    bestLen = l;
                    best = p;
                }
            }
        }
        if(best == nullptr) {
            throw std::string("Failed to find join to existing blob");
        }
        place(*best);
    }

    void fill(void) {
        while(!placements.empty()) {
            add_next();
        }
    }

    std::string draw(char blank, const std::string &linesep) const {
        std::string result;
        result.reserve((bound.width() + linesep.size()) * bound.height());
        for(int y = bound.tl.y; y < bound.br.y; ++ y) {
            for(int x = bound.tl.x; x < bound.br.x; ++ x) {
                auto c = state.find(vec2(x, y));
                result.push_back((c == state.end()) ? blank : c->second);
            }
            result.append(linesep);
        }
        return result;
    }

    box2 bounds(void) const {
        return bound;
    }

    int chars(void) const {
        return state.size();
    }
};

int main(int argc, const char *const *argv) {
    std::vector<std::string> words;

    // Load all words from input
    while(true) {
        std::string word;
        std::getline(std::cin, word);
        if(word.empty()) {
            break;
        }
        words.push_back(std::move(word));
    }

    std::cerr
        << "Input word count: " << words.size() << std::endl;

    // initialise grid
    grid g(words);

    // add first word (order of input file means this is longest word)
    g.place(word_placement(vec2(0, 0), vec2(1, 0), g.find_word(words.front())));

    // add all other words
    g.fill();

    std::cout << g.draw('.', "\n");

    int w = g.bounds().width();
    int h = g.bounds().height();
    int n = g.chars();
    std::cerr
        << "Final grid: " << w << "x" << h
        << " with " << n << " characters"
        << " (" << (n * 100.0 / (w * h)) << "% filled)"
        << std::endl;
    return 0;
}

Ve son olarak, sonuç:

Son ızgara


Alternatif sonuç (programda belirli yönlere ağırlık veren ve maliyet fonksiyonunu değiştiren birkaç hatayı düzelttikten sonra, daha kompakt ama daha az optimal bir çözüm buldum): 29275 karakter, 198x195 (% 75,8 dolu):

Gönye ızgarası

Yine bu programları optimize etmek için çok şey yapmadım, bu yüzden biraz zaman alıyor. Ama ızgarayı doldururken izleyebilirsiniz, bu oldukça hipnotiktir.


2

C ++, 34191 karakter "ızgara" (minimum insan müdahalesi ile 6 veya 7 kolayca kaydedilebilir)

Bu, 2B durum için bir sınır olarak daha fazla alınmalıdır, çünkü cevap hala 1D dizesidir. Bu sadece önceki meydan okuma benim kod, ama herhangi bir dize ters yeni yeteneği ile. Bu bize sözcükleri birleştirmek için çok daha fazla alan sağlıyor (özellikle üst üste binmeyen süper sicimlerin en büyük durumunu 26'ya; alfabenin her harfi için bir tane kapsadığı için).

Bazı hafif 2B görsel çekicilik için, eğer ücretsiz yapabilirse (yani 0 örtüşen kelimeler arasında) sonuçta satır kesmeleri koyar.

Oldukça yavaş (hala önbellek yok). İşte kod:

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>

std::size_t calcOverlap(const std::string &a, const std::string &b, std::size_t limit, std::size_t minimal) {
    std::size_t la = a.size();
    for(std::size_t p = std::min(std::min(la, b.size()), limit + 1); -- p > minimal; ) {
        if(a.compare(la - p, p, b, 0, p) == 0) {
            return p;
        }
    }
    return 0;
}

bool isSameReversed(const std::string &a, const std::string &b) {
    std::size_t l = a.size();
    if(b.size() != l) {
        return false;
    }
    for(std::size_t i = 0; i < l; ++ i) {
        if(a[i] != b[l-i-1]) {
            return false;
        }
    }
    return true;
}

int main() {
    std::vector<std::string> words;

    // Load all words from input and their reverses (words can be backwards now)
    while(true) {
        std::string word;
        std::getline(std::cin, word);
        if(word.empty()) {
            break;
        }
        words.push_back(word);
        std::reverse(word.begin(), word.end());
        words.push_back(std::move(word));
    }

    std::cerr
        << "Input word count: " << words.size() << std::endl;

    // Remove all fully subsumed words

    for(auto p = words.begin(); p != words.end(); ) {
        bool subsumed = false;
        for(auto i = words.begin(); i != words.end(); ++ i) {
            if(i == p) {
                continue;
            }
            if(i->find(*p) != std::string::npos) {
                subsumed = true;
                break;
            }
        }
        if(subsumed) {
            p = words.erase(p);
        } else {
            ++ p;
        }
    }

    std::cerr
        << "After subsuming checks: " << words.size()
        << std::endl;

    // Sort words longest-to-shortest (not necessary but doesn't hurt. Makes finding maxlen a tiny bit easier)
    std::sort(words.begin(), words.end(), [](const std::string &a, const std::string &b) {
        return a.size() > b.size();
    });

    std::size_t maxlen = words.front().size();

    // Repeatedly combine most-compatible words until we have only 1 word left (+ its reverse)
    std::size_t bestPossible = maxlen - 1;
    while(words.size() > 2) {
        auto bestA = words.begin();
        auto bestB = -- words.end();
        std::size_t bestOverlap = 0;
        for(auto p = ++ words.begin(), e = words.end(); p != e; ++ p) {
            if(p->size() - 1 <= bestOverlap) {
                continue;
            }
            for(auto q = words.begin(); q != p; ++ q) {
                std::size_t overlap = calcOverlap(*p, *q, bestPossible, bestOverlap);
                if(overlap > bestOverlap && !isSameReversed(*p, *q)) {
                    bestA = p;
                    bestB = q;
                    bestOverlap = overlap;
                }
                overlap = calcOverlap(*q, *p, bestPossible, bestOverlap);
                if(overlap > bestOverlap && !isSameReversed(*p, *q)) {
                    bestA = q;
                    bestB = p;
                    bestOverlap = overlap;
                }
            }
            if(bestOverlap == bestPossible) {
                break;
            }
        }
        std::string newStr = std::move(*bestA);
        if(bestOverlap == 0) {
            newStr.push_back('\n');
        }
        newStr.append(*bestB, bestOverlap, std::string::npos);

        if(bestA == -- words.end()) {
            words.pop_back();
            *bestB = std::move(words.back());
            words.pop_back();
        } else {
            *bestB = std::move(words.back());
            words.pop_back();
            *bestA = std::move(words.back());
            words.pop_back();
        }

        // Remove any words which are now in the result (forward or reverse)
        // (would not be necessary if we didn't have the reversed forms too)
        std::string newRev = newStr;
        std::reverse(newRev.begin(), newRev.end());
        for(auto p = words.begin(); p != words.end(); ) {
            if(newStr.find(*p) != std::string::npos || newRev.find(*p) != std::string::npos) {
                std::cerr << "Now subsumes: " << *p << std::endl;
                p = words.erase(p);
            } else {
                ++ p;
            }
        }

        std::cerr
            << "Words remaining: " << (words.size() + 1)
            << " Latest combination: (" << bestOverlap << ") " << newStr
            << std::endl;

        words.push_back(std::move(newStr));
        words.push_back(std::move(newRev));
        bestPossible = bestOverlap; // Merging existing words will never make longer merges possible
    }

    std::cerr
        << "After non-trivial merging: " << words.size()
        << std::endl;

    if(words.size() == 2 && !isSameReversed(words.front(), words.back())) {
        // must be 2 palindromes, so just join them
        words.front().append(words.back());
    }

    std::string result = words.front();

    std::cout
        << result
        << std::endl;
    std::cerr
        << "Word size: " << result.size() // Note this number includes newlines, so to get the grid size according to the rules, subtract newlines manually
        << std::endl;
    return 0;
}

Sonuç: http://pastebin.com/UTe2WMcz (önceki zorluktan 4081 karakter daha az)

Canavar çizgisini kesişen xdve wvçizgilerini dikey koyarak bazı önemsiz tasarrufların yapılabileceği oldukça açıktır . Sonra , ve ile hhidetautisbneuduikesişebilir . Bu 4 karakter kazandırır. başka bir 2'yi kaydetmek için mevcut bir örtüşmeye ikame edilebilir (eğer bulunursa) (veya böyle bir örtüşme yoksa yalnızca 1) ve bunun yerine dikey olarak eklenmesi gerekir). Sonunda tasarruf etmek için bir yere dikey olarak eklenebilir 1. Bu, minimum insan müdahalesi ile sonuçtan 6-7 karakter kaydedilebileceği anlamına gelir.dlxwwwowaxocnnaesddawnbcllilhnsmjjrajaytq

Ben aşağıdaki yöntemle 2D içine almak istiyorum, ama o hesaplamak oldukça pratik olan O (n ^ 4) algoritması yapmadan uygulamak için bir yol bulmak için mücadele ediyorum!

  1. Algoritmayı yukarıdaki gibi çalıştırın, ancak örtüşmeler 1 karaktere ulaştığında kısa durun
  2. Defalarca:
    1. Dikdörtgene yerleştirilebilen 4 kelimelik bir grup bulun
    2. Bu dikdörtgenin üzerine, her kelimenin geçerli şeklin en az 2 karakterine denk geldiği kadar çok kelime ekleyin (8 yönün tamamını kontrol edin) - bu, mevcut koddan gerçekten avantaj sağlayabildiğimiz tek aşamadır.
  3. Her seferinde tek harfli çakışma arayan sonuçtaki ızgaraları ve yalnız kelimeleri birleştirin

0

PHP

bu işi terapötik olarak yapar; ancak 10000 muhtemelen yineleme için çok fazla kelime. Komut dosyası şimdi çalışıyor. (hala 24 saat sonra koştu)
küçük dizinlerde iyi çalışıyor, ancak önümüzdeki hafta yinelemeli bir sürüm yapabilirim.

$f=array("pen","op","po","ne","pro","aaa","abcd","dcba"); will output abcd apen arop ao .. although this is not an optimal result (scoring was changed ... I´m working on a generator). One optimal result is this: açık .ra .oa dcba`

Aynı zamanda çok hızlı değil; yalnızca alt dizeleri kaldırır ve kalıntıları uzunluğa göre sıralar,
gerisi kaba kuvvettir: kelimeleri bir dikdörtgene sığdırmaya çalışır, başarısız olursa daha büyük bir dikdörtgeni deneyin.

btw: Alt dize parçasının büyük dizin için makinemde 4.5 dakikaya ihtiyacı var
ve 6,190 kelimeye kadar kesiyor; üzerlerindeki sıralama 11 saniye sürer.

$f=file('https://raw.githubusercontent.com/first20hours/google-10000-english/master/google-10000-english.txt');
// A: remove substrings - forward or reversed
$s=join(' ',$f);
$haystack="$s ".strrev($s);
foreach($f as$w)
{
    $r=strrev($w=trim($w)); // remove trailing line break and create reverse word
    if(!preg_match("%$w\w|\w$w%",$haystack)
        // no substr match ... now: is the reverse word in the list?
        // if so, keep only the lower one (ascii values)
        &!($w>$r&&strstr($s,$r))
        // strstr does NOT render the reverse substr regex obsolete:
        // this is only executed for $w=abc, not for $w=bca!
    )
        $g[]=$w
    ;
}

// B: sort the words by length
usort($g,function($a,$b){return strlen($a)-strlen($b);});

// C1: function to fit $words into $map
function gomap($words,$map)
{
    $h=count($map);$w=strlen($map[0]);
    $len=strlen($word=array_pop($words));
    // $x,$y=position; $d=0:horizontal, $d=1:vertical; $r=0: word, $r=1: reverse word
    for($x=$w-$len;$x>=0;$x--)for($y=$h-$len;$y>=0;$y--)for($d=0;$d<2;$d++)for($r=0;$r<2;$r++)
    {
        // does the word fit there?
        $drow=$r?strrev($word):$word;
        for($ok=1,$i=0;$ok&$i<$len;$i++)
            $ok=in_array($map[$y+$d*$i][$x+$i-$d*$i], [' ',$drow[$i]])
        ;
        // it does, paint it
        if($ok)
        {
            for($i=0;$i<$len;$i++)
                $map[$y+$d*$i][$x+$i-$d*$i]=$drow[$i];
            if(!count($words))      // this was the last word: return map
                return $map;
            else                    // there are more words: recurse
                if ($ok=gomap($words,$map))
                    return $ok;
            // no fit, try next position
        }
    }
    return 0;
}

// C2: rectangle loop
for($h=0;++$h;)for($w=0;$w++<$h;)   // define a rectangle
{
    // and try to fit the words in there
    if($map=gomap($g,
        array_fill(0,$h,str_repeat(' ',$w))
    ))
    {
        // words fit; output and break loops
        echo '<pre>',implode("\n",$map),'</pre>';
        break 2;
    }
}

Program daha küçük bir sözlükte çalıştırıldığında bir örnek verebilir misiniz?
Loovjo

Aslında skoru değiştirdim (üzgünüm!). Kullanılmayan karakter sayısı puanınıza dahil edilmedi.
Nathan Merrill

2
Buradaki döngü bunun ~ O ((w * h) ^ n) olduğu anlamına gelir. Çözümün 35k harf (son zorluktan itibaren) gibi bir şeye sahip olacağını biliyoruz, bu yüzden gomap'i yaklaşık 35000 ^ 6000 kez çağırır. Hesap makinem bunun "sonsuz" olduğunu söylüyor. Daha iyi bir hesap makinesi bana gerçek numarayı söyler ( wolframalpha.com/input/?i=35000%5E6000 ). Şimdi, evrendeki her atomun bu programı çalıştırmaya adanmış 3 terrahertz işlemci olduğunu varsayarsak, evrenin tamamlanmadan şimdiye kadar 10 ^ 27154 kat daha uzun süre var olması gerekir. Söylediğim şey: bitmesini beklemeyin!
Dave
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.