Arka fon
Kendi kendime yardım öğreniyorum, Coq. Şimdiye kadar Yves BERTOT en okuyarak tamamlayan Aceleniz Coq . Şimdi, amacım bölme algoritması ile sonuçlanan doğal sayılarla ilgili bazı temel sonuçları kanıtlamak. Ancak, bu hedefe doğru ilerlerken bazı aksiliklerle karşılaştım. Özellikle, aşağıdaki iki sonuç Coq'ta kanıtlamanın başlangıçta hayal ettiğimden daha zor olduğunu kanıtladı (pun amaçlı). Aslında, birçok meyvesiz denemeden sonra, bunları elle kanıtlamak için başvurdum (aşağıda gösterildiği gibi). Bu açıkça Coq ile başa çıkmada daha yetkin olmamı sağlıyor; bu yüzden bu foruma dönüyorum. Ümit ediyorum ki, bu sitede birileri yetenekli ve istekliaşağıdaki kanıtlarımı Coq'un kabul ettiği bir kanıt haline getirmeme yardımcı olmak için. Tüm yardım içtenlikle takdir edilmektedir!
Teorem A
Hepsi için
varsaymak . Dolayısıyla bir ile
Bir yüklem tanımlayın
Göstermek yeterlidir . Bunu indüksiyonla kanıtlıyoruz. Görmek, ethat değilse o zaman tutar Peano la için geçerlidir. Böylece,. Şimdi kanıtlıyoruz: Varsayalım . Bu tanımdan ve böylece bu durumda da. Son olarak, Peano'nun beşinci aksiyomu ve tarafından aldık .
Teorem B
Hepsi için
Eğer sonra tanımı gereği ve eğer sonra ayrıca tanım gereği. Eğer ve sonra geçiş ve yansıma ile, bu bir çelişki. Sonuç olarak, ifadelerin birden fazlası doğru değildir.
Biz tutarız sabit ve uyarılmış . Ne zaman sahibiz hepsi için , temel durumu kanıtlar. Daha sonra, teoremin; şimdi teoremini kanıtlamak istiyoruz. İçin trichotomy'den, üç durum vardır: , ve . Eğer, sonra açıkça . Eğer, sonra (gibi hepsi için ). Son olarak, varsayalım Sonra A teoremine göre veya ve her iki durumda da işimiz bitti.
Kanıtlamak istediğim teoremler Coq.
Lemma less_lem (xy: N): daha az x (succ y) -> veya (daha az xy) (IN xy).
Teorem Ntrikotomi: (tüm xy: N veya (daha az xy) (veya (IN xy) (daha az yx))).
Yararlı sonuçlar
Burada, tanımladığım bazı sonuçları topladım ve bu noktaya kadar ispatladım. Bunlar yukarıda bahsettiğim şeyler. * Bu, şimdiye kadar yazmayı başardığım kod, çoğu tanımdan oluşuyor. *
(* Sigma types *)
Inductive Sigma (A:Set)(B:A -> Set) :Set :=
Spair: forall a:A, forall b : B a,Sigma A B.
Definition E (A:Set)(B:A -> Set)
(C: Sigma A B -> Set)
(c: Sigma A B)
(d: (forall x:A, forall y:B x,
C (Spair A B x y))): C c :=
match c as c0 return (C c0) with
| Spair a b => d a b
end.
(* Binary sum type *)
Inductive sum' (A B:Set):Set :=
inl': A -> sum' A B | inr': B -> sum' A B.
Print sum'_rect.
Definition D (A B : Set)(C: sum' A B -> Set)
(c: sum' A B)
(d: (forall x:A, C (inl' A B x)))
(e: (forall y:B, C (inr' A B y))): C c :=
match c as c0 return C c0 with
| inl' x => d x
| inr' y => e y
end.
(* Three useful finite sets *)
Inductive N_0: Set :=.
Definition R_0
(C:N_0 -> Set)
(c: N_0): C c :=
match c as c0 return (C c0) with
end.
Inductive N_1: Set := zero_1:N_1.
Definition R_1
(C:N_1 -> Set)
(c: N_1)
(d_zero: C zero_1): C c :=
match c as c0 return (C c0) with
| zero_1 => d_zero
end.
Inductive N_2: Set := zero_2:N_2 | one_2:N_2.
Definition R_2
(C:N_2 -> Set)
(c: N_2)
(d_zero: C zero_2)
(d_one: C one_2): C c :=
match c as c0 return (C c0) with
| zero_2 => d_zero
| one_2 => d_one
end.
(* Natural numbers *)
Inductive N:Set :=
zero: N | succ : N -> N.
Print N.
Print N_rect.
Definition R
(C:N -> Set)
(d: C zero)
(e: (forall x:N, C x -> C (succ x))):
(forall n:N, C n) :=
fix F (n: N): C n :=
match n as n0 return (C n0) with
| zero => d
| succ n0 => e n0 (F n0)
end.
(* Boolean to truth-value converter *)
Definition Tr (c:N_2) : Set :=
match c as c0 with
| zero_2 => N_0
| one_2 => N_1
end.
(* Identity type *)
Inductive I (A: Set)(x: A) : A -> Set :=
r : I A x x.
Print I_rect.
Theorem J
(A:Set)
(C: (forall x y:A,
forall z: I A x y, Set))
(d: (forall x:A, C x x (r A x)))
(a:A)(b:A)(c:I A a b): C a b c.
induction c.
apply d.
Defined.
(* functions are extensional wrt
identity types *)
Theorem I_I_extensionality (A B: Set)(f: A -> B):
(forall x y:A, I A x y -> I B (f x) (f y)).
Proof.
intros x y P.
induction P.
apply r.
Defined.
(* addition *)
Definition add (m n:N) : N
:= R (fun z=> N) m (fun x y => succ y) n.
(* multiplication *)
Definition mul (m n:N) : N
:= R (fun z=> N) zero (fun x y => add y m) n.
(* Axioms of Peano verified *)
Theorem P1a: (forall x: N, I N (add x zero) x).
intro x.
(* force use of definitional equality
by applying reflexivity *)
apply r.
Defined.
Theorem P1b: (forall x y: N,
I N (add x (succ y)) (succ (add x y))).
intros.
apply r.
Defined.
Theorem P2a: (forall x: N, I N (mul x zero) zero).
intros.
apply r.
Defined.
Theorem P2b: (forall x y: N,
I N (mul x (succ y)) (add (mul x y) x)).
intros.
apply r.
Defined.
Definition pd (n: N): N :=
R (fun _=> N) zero (fun x y=> x) n.
(* alternatively
Definition pd (x: N): N :=
match x as x0 with
| zero => zero
| succ n0 => n0
end.
*)
Theorem P3: (forall x y:N,
I N (succ x) (succ y) -> I N x y).
intros x y p.
apply (I_I_extensionality N N pd (succ x) (succ y)).
apply p.
Defined.
Definition not (A:Set): Set:= (A -> N_0).
Definition isnonzero (n: N): N_2:=
R (fun _ => N_2) zero_2 (fun x y => one_2) n.
Theorem P4 : (forall x:N,
not (I N (succ x) zero)).
intro x.
intro p.
apply (J N (fun x y z =>
Tr (isnonzero x) -> Tr (isnonzero y))
(fun x => (fun t => t)) (succ x) zero)
.
apply p.
simpl.
apply zero_1.
Defined.
Theorem P5 (P:N -> Set):
P zero -> (forall x:N, P x -> P (succ x))
-> (forall x:N, P x).
intros base step n.
apply R.
apply base.
apply step.
Defined.
(* I(A,-,-) is an equivalence relation *)
Lemma Ireflexive (A:Set): (forall x:A, I A x x).
intro x.
apply r.
Defined.
Lemma Isymmetric (A:Set): (forall x y:A, I A x y -> I A y x).
intros x y P.
induction P.
apply r.
Defined.
Lemma Itransitive (A:Set):
(forall x y z:A, I A x y -> I A y z -> I A x z).
intros x y z P Q.
induction P.
assumption.
Defined.
Lemma succ_cong : (forall m n:N, I N m n -> I N (succ m) (succ n)).
intros m n H.
induction H.
apply r.
Defined.
Lemma zeroadd: (forall n:N, I N (add zero n) n).
intro n.
induction n.
simpl.
apply r.
apply succ_cong.
auto.
Defined.
Lemma succadd: (forall m n:N, I N (add (succ m) n) (succ (add m n))).
intros.
induction n.
simpl.
apply r.
simpl.
apply succ_cong.
auto.
Defined.
Lemma commutative_add: (forall m n:N, I N (add m n) (add n m)).
intros n m; elim n.
apply zeroadd.
intros y H; elim (succadd m y).
simpl.
rewrite succadd.
apply succ_cong.
assumption.
Defined.
Lemma associative_add: (forall m n k:N,
I N (add (add m n) k) (add m (add n k))).
intros m n k.
induction k.
simpl.
apply Ireflexive.
simpl.
apply succ_cong.
assumption.
Defined.
Definition or (A B : Set):= sum' A B.
Definition less (m n: N) :=
Sigma N (fun z => I N (add m (succ z)) n).
Lemma less_lem (x y:N) :
less x (succ y) -> or (less x y) (I N x y).
intro.
destruct H.
right.
(* Here is where I'm working right now *)
Defined.
Theorem Ntrichotomy: (forall x y:N,
or (less x y) (or (I N x y) (less y x))).