Diğer karmaşıklık sınıflarını ayırmanın önündeki engeller


9

Doğal Kanıtlar , Relativizasyon ve Cebirleşme de diğer karmaşıklık sınıflarının ayrılmasını etkiler mi?LN-LN-PcÖN-PP'HPSPbirCELNLNPcoNPPHPSPACE vb?

Örneğin, doğal kanıtlar bariyeri, N-PCÖN-PNPCoNP ayrılacağı için PN-PPNP. Ancak arasındaki ilişkiN-PNP ve CÖN-PCoNP arasındaki ilişkilere kıyasla OWF'lerle fazla bir şey yok gibi görünüyor PP ve N-PNP. Doğal kanıtlar,N-PCÖN-PNPCoNP?


Makalenin en üst satırını biliyorum ( cs.umd.edu/~gasarch/BLOGPAPERS/natural.pdf )PPSPbirCEPPSPACE, PN-PPNP, PN-CPNC. Bu yüzden dışladımPPYukarıdaki listeden. Bildiğimden beriN-PCÖN-PNPCoNP spearates PP ve N-PNPayrıca soruyu ayrı ayrı dahil ettim. Özel olarak söylediği bir teklifiniz var mı?N-PCÖN-PNPCoNP?
T ....

Yanıtlar:


12

Mevcut engellerin söyleyecek çok az şeyi olan (en az) iki alan vardır:

ACC Alt Sınırları TC0'ın (muntazam olmayan) ACC'de olmadığını ayırmanın bilinen bir engeli yoktur - ayırmanın yanlış olabileceği olasılığı dışında. Doğal Kanıtlar bariyerinin ACC için geçerli olup olmadığı belirsizdir. Soru şuna dayanıyor: ACC'de uygulanabilir sahte işlevler olmasını beklemeli miyiz?

LOGSPACE vs NP Fortnow'un işaret ettiği gibi , uzay sınırlı hesaplama için mevcut kehanet mekanizmaları LOGSPACE vs NP için gerçek bir engel oluşturmuyor gibi görünüyor. Bildiğim kadarıyla, LOGSPACE ve NP'nin çöküşünü veren bilinen oracle modelleri ALTERNATING LOGSPACE'i (yani P) ve ALTERNATING POLYTIME'ı (yani PSPACE) daraltır, dolayısıyla bu oracles alternatif hesaplama modellerini gerçeklikle tutarsız bir şekilde ele alır (LOGSPACE eşit olmadığından) PSPACE).


6

Razborov and Rudich's result in their natural proofs paper is quite general. It is not restricted to PP vs. NPNP.

I personally like the clarity of the explanation in Stasys Jukna's recent book "Boolean Function Complexity: Advances and Frontiers":

Definition 18.30. A function G:{0,1}l{0,1}nG:{0,1}l{0,1}n with l<nl<n is called an (s,ϵ)(s,ϵ)-secure pseudorandom generator if for any circuit CC of size ss on nn variables, |Pr[C(y)=1]Pr[C(G(x))=1]|<ϵ,

|Pr[C(y)=1]Pr[C(G(x))=1]|<ϵ,
where yy is chosen uniformly at random in {0,1}n{0,1}n, and xx in {0,1}l{0,1}l.

Definition 18.31. Let f:0,1n0,1f:0,1n0,1 be a boolean function. We say that ff is (s,ϵ)(s,ϵ)-hard if for any circuit CC of size ss, |Pr[C(x)=f(x)]12|<ϵ,

|Pr[C(x)=f(x)]12|<ϵ,
where xx is chosen uniformly at random in {0,1}n{0,1}n.

A pseudo-random function generator is a boolean function f(x,y):{0,1}n+n2{0,1}f(x,y):{0,1}n+n2{0,1}. By setting the yy-variables at random, we obtain its random subfunction fy(x)=f(x,y)fy(x)=f(x,y). Let h:{0,1}n{0,1}h:{0,1}n{0,1} be a truly random boolean function. A generator f(x,y)f(x,y) is secure against ΓΓ-attacks if for every circuit CC in ΓΓ, |Pr[C(fy)=1]Pr[C(h)=1]|<2n2.

|Pr[C(fy)=1]Pr[C(h)=1]|<2n2.

A ΓΓ-natural proof against ΛΛ is a property Φ:Bn0,1Φ:Bn0,1 satisfying the following three conditions:
1. Usefulness against ΛΛ : Φ(f)=1Φ(f)=1 implies fΛfΛ.
2. Largeness: Φ(f)=1Φ(f)=1 for at least 2O(n)2O(n) fraction of all 22n22n functions fBnfBn.
3. Constructivity: ΦΓΦΓ, that is, when looked at as a boolean function in N=2nN=2n variables, the property ΦΦ itself belongs to the class ΓΓ.

Theorem 18.35. If a complexity class ΛΛ contains a pseudo-random function generator that is secure against Γ-attacks, then there is no ΓΓ-natural proof against ΛΛ.

The question are: 1. Do we believe if there are such hard functions? 2. How constructive/large do we expect the properties in currently possible separation proofs to be?

On the other direction, Razbarov has mentioned in various places that he personally views the result as guide for what to avoid and not as an essential obstacle to proving lower-bounds.

Apart from Ryan Williams's papers during the last few years there were two papers that he has mentioned:

  1. Timothy Chow, "Almost Natural Proofs", 2008, which states that if we relax the largeness a little bit then there are provably natural properties that would separate NPNP from PP.

  2. Eric Allender and Michal Koucký, "Amplifying Lower Bounds by Means of Self-Reducibility", 2008, which says that to separate NC1NC1 from TC0 we only need to prove slightly superlinear lower-bounds on the size of TC0 circuits computing the Boolean Formula Evaluation problem. The existence of natural proofs for such a lower-bound does not seem to be unreasonable.

Relativization and Algebraization are bit more tricky and dependent on the way we define the relaztivization for these classes. But as a general rule simple diagonalization (a diagonalization which uses the same counter-example for all machines computing the same function, i.e. the counter-example only depends on what machines in the smaller compute and does not depend on their code and how they compute) cannot separate these classes.

It is possible to extract non-simple diagonalization functions from indirect diagonaliztion results like time-space lower-bounds for SAT.


".... that is secure against Γ-attacks" is this same as OWFs in P vs NP as when we compare say L vs NL or NP vs coNP or PH vs PSpace?
T....

SO you imply that circuits in NP, CoNP, PH and PSPACE all cannot break the OWF in the class which we are considering them against (for example in NP Vs CoNP circuits in CoNP cannot break OWFs in NP)? Is this interpretation correct? One question to complete the loop. Does L have PNGs?
T....

1
Γ determines the amount of constructivity you want from the proof not the larger class.
Kaveh

@JAS, btw, if I were you I would not accept an answer so quickly, you might get better answers.
Kaveh

oh ok.... I am unsure what better can be given other than what is in the book though.
T....
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.