Bunu merak ettim ve birkaç test yaptım.
Elmas veri setinde bir model eğittim ve “x” değişkeninin, bir elmasın fiyatının belirli bir eşikten daha yüksek olup olmadığını tahmin etmek için en önemli olduğunu gözlemledim. Sonra, x ile yüksek düzeyde korelasyona sahip birden çok sütun ekledim, aynı modeli çalıştırdım ve aynı değerleri gözlemledim.
İki sütun arasındaki korelasyon 1 olduğunda, xgboost modeli hesaplamadan önce fazladan sütunu kaldırdığından önem etkilenmez. Bununla birlikte, bir başkasıyla kısmen ilişkili olan ve dolayısıyla daha düşük bir katsayılı bir sütun eklediğinizde, orijinal değişken x'in önemi azalır.
Örneğin, xy = x + y değişkenini eklersem, hem x hem de y'nin önemi azalır. Benzer şekilde, r = 0,4, 0,5 veya 0,6 ile yeni değişkenler eklersem, x'in önemi azalır.
Karar ağacının değişkenlerden hangisinin kullanıldığını umursamaması nedeniyle, kollektifliğin modelin doğruluğunu hesaplarken artırmak için bir sorun olmadığını düşünüyorum. Bununla birlikte, değişkenlerin önemini etkileyebilir, çünkü birbiriyle ilişkili iki değişkenten birinin kaldırılmasının, diğerinin benzer bilgiler içerdiği göz önüne alındığında, modelin doğruluğu üzerinde büyük bir etkisi yoktur.
library(tidyverse)
library(xgboost)
evaluate_model = function(dataset) {
print("Correlation matrix")
dataset %>% select(-cut, -color, -clarity, -price) %>% cor %>% print
print("running model")
diamond.model = xgboost(
data=dataset %>% select(-cut, -color, -clarity, -price) %>% as.matrix,
label=dataset$price > 400,
max.depth=15, nrounds=30, nthread=2, objective = "binary:logistic",
verbose=F
)
print("Importance matrix")
importance_matrix <- xgb.importance(model = diamond.model)
importance_matrix %>% print
xgb.plot.importance(importance_matrix)
}
> diamonds %>% head
carat cut color clarity depth table price x y z
0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
Elmas verilerindeki bir modeli değerlendirin
Mevcut tüm sayısal değişkenler (karat, derinlik, tablo, x, y, x) göz önüne alındığında, fiyatın 400'den yüksek olup olmadığını tahmin ediyoruz.
X'in 0.375954 önem kazanma puanı ile en önemli değişken olduğunu unutmayın.
evaluate_model(diamonds)
[1] "Correlation matrix"
carat depth table x y z
carat 1.00000000 0.02822431 0.1816175 0.97509423 0.95172220 0.95338738
depth 0.02822431 1.00000000 -0.2957785 -0.02528925 -0.02934067 0.09492388
table 0.18161755 -0.29577852 1.0000000 0.19534428 0.18376015 0.15092869
x 0.97509423 -0.02528925 0.1953443 1.00000000 0.97470148 0.97077180
y 0.95172220 -0.02934067 0.1837601 0.97470148 1.00000000 0.95200572
z 0.95338738 0.09492388 0.1509287 0.97077180 0.95200572 1.00000000
[1] "running model"
[1] "Importance matrix"
Feature Gain Cover Frequency
1: x 0.37595419 0.54788335 0.19607102
2: carat 0.19699839 0.18015576 0.04873442
3: depth 0.15358261 0.08780079 0.27767284
4: y 0.11645929 0.06527969 0.18813751
5: table 0.09447853 0.05037063 0.17151492
6: z 0.06252699 0.06850978 0.11786929
Diamonds üzerinde eğitilmiş model, r = 1'den x'e bir değişken ekleyerek
Burada, x ile mükemmel bir şekilde ilişkilendirildiği için yeni bir bilgi eklemeyen yeni bir sütun ekliyoruz.
Bu yeni değişkenin çıktıda mevcut olmadığını unutmayın. Görünüşe göre xgboost, hesaplamaya başlamadan önce mükemmel bir şekilde ilişkili değişkenleri otomatik olarak kaldırır. X'in önem kazancı aynıdır, 0.3759.
diamonds_xx = diamonds %>%
mutate(xx = x + runif(1, -1, 1))
evaluate_model(diamonds_xx)
[1] "Correlation matrix"
carat depth table x y z
carat 1.00000000 0.02822431 0.1816175 0.97509423 0.95172220 0.95338738
depth 0.02822431 1.00000000 -0.2957785 -0.02528925 -0.02934067 0.09492388
table 0.18161755 -0.29577852 1.0000000 0.19534428 0.18376015 0.15092869
x 0.97509423 -0.02528925 0.1953443 1.00000000 0.97470148 0.97077180
y 0.95172220 -0.02934067 0.1837601 0.97470148 1.00000000 0.95200572
z 0.95338738 0.09492388 0.1509287 0.97077180 0.95200572 1.00000000
xx 0.97509423 -0.02528925 0.1953443 1.00000000 0.97470148 0.97077180
xx
carat 0.97509423
depth -0.02528925
table 0.19534428
x 1.00000000
y 0.97470148
z 0.97077180
xx 1.00000000
[1] "running model"
[1] "Importance matrix"
Feature Gain Cover Frequency
1: x 0.37595419 0.54788335 0.19607102
2: carat 0.19699839 0.18015576 0.04873442
3: depth 0.15358261 0.08780079 0.27767284
4: y 0.11645929 0.06527969 0.18813751
5: table 0.09447853 0.05037063 0.17151492
6: z 0.06252699 0.06850978 0.11786929
X + y için bir sütun ekleyerek Diamonds üzerinde eğitilmiş model
Yeni bir sütun xy = x + y ekliyoruz. Bu kısmen hem x hem de y ile ilişkilidir.
X ve y'nin öneminin, x için 0,3759'dan 0,3592'ye ve y için 0,116'dan 0,079'a hafifçe azaldığını unutmayın.
diamonds_xy = diamonds %>%
mutate(xy=x+y)
evaluate_model(diamonds_xy)
[1] "Correlation matrix"
carat depth table x y z
carat 1.00000000 0.02822431 0.1816175 0.97509423 0.95172220 0.95338738
depth 0.02822431 1.00000000 -0.2957785 -0.02528925 -0.02934067 0.09492388
table 0.18161755 -0.29577852 1.0000000 0.19534428 0.18376015 0.15092869
x 0.97509423 -0.02528925 0.1953443 1.00000000 0.97470148 0.97077180
y 0.95172220 -0.02934067 0.1837601 0.97470148 1.00000000 0.95200572
z 0.95338738 0.09492388 0.1509287 0.97077180 0.95200572 1.00000000
xy 0.96945349 -0.02750770 0.1907100 0.99354016 0.99376929 0.96744200
xy
carat 0.9694535
depth -0.0275077
table 0.1907100
x 0.9935402
y 0.9937693
z 0.9674420
xy 1.0000000
[1] "running model"
[1] "Importance matrix"
Feature Gain Cover Frequency
1: x 0.35927767 0.52924339 0.15952849
2: carat 0.17881931 0.18472506 0.04793713
3: depth 0.14353540 0.07482622 0.24990177
4: table 0.09202059 0.04714548 0.16267191
5: xy 0.08203819 0.04706267 0.13555992
6: y 0.07956856 0.05284980 0.13595285
7: z 0.06474029 0.06414738 0.10844794
Gereksiz sütunlar eklenerek değiştirilen Elmas verileri üzerinde eğitilmiş model
X (r = 0.4, 0.5 ve 0.6) ile ilişkili üç yeni sütun ekliyoruz ve ne olduğunu görüyoruz.
X'in öneminin 0.3759'dan 0.279'a düştüğünü unutmayın.
#' given a vector of values (e.g. diamonds$x), calculate three new vectors correlated to it
#'
#' Source: https://stat.ethz.ch/pipermail/r-help/2007-April/128938.html
calculate_correlated_vars = function(x1) {
# create the initial x variable
#x1 <- diamonds$x
# x2, x3, and x4 in a matrix, these will be modified to meet the criteria
x234 <- scale(matrix( rnorm(nrow(diamonds) * 3), ncol=3 ))
# put all into 1 matrix for simplicity
x1234 <- cbind(scale(x1),x234)
# find the current correlation matrix
c1 <- var(x1234)
# cholesky decomposition to get independence
chol1 <- solve(chol(c1))
newx <- x1234 %*% chol1
# check that we have independence and x1 unchanged
zapsmall(cor(newx))
all.equal( x1234[,1], newx[,1] )
# create new correlation structure (zeros can be replaced with other r vals)
newc <- matrix(
c(1 , 0.4, 0.5, 0.6,
0.4, 1 , 0 , 0 ,
0.5, 0 , 1 , 0 ,
0.6, 0 , 0 , 1 ), ncol=4 )
# check that it is positive definite
eigen(newc)
chol2 <- chol(newc)
finalx <- newx %*% chol2 * sd(x1) + mean(x1)
# verify success
mean(x1)
colMeans(finalx)
sd(x1)
apply(finalx, 2, sd)
zapsmall(cor(finalx))
#pairs(finalx)
all.equal(x1, finalx[,1])
finalx
}
finalx = calculate_correlated_vars(diamonds$x)
diamonds_cor = diamonds
diamonds_cor$x5 = finalx[,2]
diamonds_cor$x6 = finalx[,3]
diamonds_cor$x7 = finalx[,4]
evaluate_model(diamonds_cor)
[1] "Correlation matrix"
carat depth table x y z
carat 1.00000000 0.028224314 0.18161755 0.97509423 0.95172220 0.95338738
depth 0.02822431 1.000000000 -0.29577852 -0.02528925 -0.02934067 0.09492388
table 0.18161755 -0.295778522 1.00000000 0.19534428 0.18376015 0.15092869
x 0.97509423 -0.025289247 0.19534428 1.00000000 0.97470148 0.97077180
y 0.95172220 -0.029340671 0.18376015 0.97470148 1.00000000 0.95200572
z 0.95338738 0.094923882 0.15092869 0.97077180 0.95200572 1.00000000
x5 0.39031255 -0.007507604 0.07338484 0.40000000 0.38959178 0.38734145
x6 0.48879000 -0.016481580 0.09931705 0.50000000 0.48835896 0.48487442
x7 0.58412252 -0.013772440 0.11822089 0.60000000 0.58408881 0.58297414
x5 x6 x7
carat 3.903125e-01 4.887900e-01 5.841225e-01
depth -7.507604e-03 -1.648158e-02 -1.377244e-02
table 7.338484e-02 9.931705e-02 1.182209e-01
x 4.000000e-01 5.000000e-01 6.000000e-01
y 3.895918e-01 4.883590e-01 5.840888e-01
z 3.873415e-01 4.848744e-01 5.829741e-01
x5 1.000000e+00 5.925447e-17 8.529781e-17
x6 5.925447e-17 1.000000e+00 6.683397e-17
x7 8.529781e-17 6.683397e-17 1.000000e+00
[1] "running model"
[1] "Importance matrix"
Feature Gain Cover Frequency
1: x 0.27947762 0.51343709 0.09748172
2: carat 0.13556427 0.17401365 0.02680747
3: x5 0.13369515 0.05267688 0.18155971
4: x6 0.12968400 0.04804315 0.19821284
5: x7 0.10600238 0.05148826 0.16450041
6: depth 0.07087679 0.04485760 0.11251015
7: y 0.06050565 0.03896716 0.08245329
8: table 0.04577057 0.03135677 0.07554833
9: z 0.03842355 0.04515944 0.06092608