LSTM (veya başka bir tekrarlayan) sinir ağından bir zaman serisi tahmini etrafında tahmin aralığını (olasılık dağılımı) hesaplamak için bir yöntem var mı?
Örneğin, son 10 gözlemlenen örneğe (t-9 ila t) dayanarak, gelecekteki 10 örneği (t + 1 ila t + 10) tahmin ediyorum, t + 1'deki tahminin daha fazla olmasını beklerim t + 10'daki tahminden daha doğru. Genellikle, aralığı göstermek için tahminin etrafına hata çubukları çizilebilir. Bir ARIMA modeliyle (normal olarak dağıtılan hatalar varsayımı altında), tahmin edilen her değerin etrafında bir tahmin aralığı (örneğin% 95) hesaplayabilirim. Bir LSTM modelinden aynı (veya tahmin aralığı ile ilgili bir şey) hesaplayabilir miyim?
Ben örneklerle dolu sonrasında Keras / Python LSTMs birlikte çalışıyor ediyorum machinelearningmastery.com benim örnek kod (aşağıda) dayanmaktadır hangi. Sorunu ayrık kutulara sınıflandırma olarak yeniden yapılandırmayı düşünüyorum, çünkü bu sınıf başına güven üretiyor, ancak bu kötü bir çözüm gibi görünüyor.
Birkaç benzer konu var (aşağıdaki gibi), ancak hiçbir şey doğrudan LSTM (veya gerçekten de diğer) sinir ağlarından tahmin aralıkları konusunu ele almıyor gibi görünüyor:
/stats/25055/how-to-calculate-the-confidence-interval-for-time-series-prediction
ARIMA vs LSTM kullanarak zaman serisi tahmini
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from math import sin
from matplotlib import pyplot
import numpy as np
# Build an LSTM network and train
def fit_lstm(X, y, batch_size, nb_epoch, neurons):
X = X.reshape(X.shape[0], 1, X.shape[1]) # add in another dimension to the X data
y = y.reshape(y.shape[0], y.shape[1]) # but don't add it to the y, as Dense has to be 1d?
model = Sequential()
model.add(LSTM(neurons, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True))
model.add(Dense(y.shape[1]))
model.compile(loss='mean_squared_error', optimizer='adam')
for i in range(nb_epoch):
model.fit(X, y, epochs=1, batch_size=batch_size, verbose=1, shuffle=False)
model.reset_states()
return model
# Configuration
n = 5000 # total size of dataset
SLIDING_WINDOW_LENGTH = 30
SLIDING_WINDOW_STEP_SIZE = 1
batch_size = 10
test_size = 0.1 # fraction of dataset to hold back for testing
nb_epochs = 100 # for training
neurons = 8 # LSTM layer complexity
# create dataset
#raw_values = [sin(i/2) for i in range(n)] # simple sine wave
raw_values = [sin(i/2)+sin(i/6)+sin(i/36)+np.random.uniform(-1,1) for i in range(n)] # double sine with noise
#raw_values = [(i%4) for i in range(n)] # saw tooth
all_data = np.array(raw_values).reshape(-1,1) # make into array, add anothe dimension for sci-kit compatibility
# data is segmented using a sliding window mechanism
all_data_windowed = [np.transpose(all_data[idx:idx+SLIDING_WINDOW_LENGTH]) for idx in np.arange(0,len(all_data)-SLIDING_WINDOW_LENGTH, SLIDING_WINDOW_STEP_SIZE)]
all_data_windowed = np.concatenate(all_data_windowed, axis=0).astype(np.float32)
# split data into train and test-sets
# round datasets down to a multiple of the batch size
test_length = int(round((len(all_data_windowed) * test_size) / batch_size) * batch_size)
train, test = all_data_windowed[:-test_length,:], all_data_windowed[-test_length:,:]
train_length = int(np.floor(train.shape[0] / batch_size)*batch_size)
train = train[:train_length,...]
half_size = int(SLIDING_WINDOW_LENGTH/2) # split the examples half-half, to forecast the second half
X_train, y_train = train[:,:half_size], train[:,half_size:]
X_test, y_test = test[:,:half_size], test[:,half_size:]
# fit the model
lstm_model = fit_lstm(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epochs, neurons=neurons)
# forecast the entire training dataset to build up state for forecasting
X_train_reshaped = X_train.reshape(X_train.shape[0], 1, X_train.shape[1])
lstm_model.predict(X_train_reshaped, batch_size=batch_size)
# predict from test dataset
X_test_reshaped = X_test.reshape(X_test.shape[0], 1, X_test.shape[1])
yhat = lstm_model.predict(X_test_reshaped, batch_size=batch_size)
#%% Plot prediction vs actual
x_axis_input = range(half_size)
x_axis_output = [x_axis_input[-1]] + list(half_size+np.array(range(half_size)))
fig = pyplot.figure()
ax = fig.add_subplot(111)
line1, = ax.plot(x_axis_input,np.zeros_like(x_axis_input), 'r-')
line2, = ax.plot(x_axis_output,np.zeros_like(x_axis_output), 'o-')
line3, = ax.plot(x_axis_output,np.zeros_like(x_axis_output), 'g-')
ax.set_xlim(np.min(x_axis_input),np.max(x_axis_output))
ax.set_ylim(-4,4)
pyplot.legend(('Input','Actual','Predicted'),loc='upper left')
pyplot.show()
# update plot in a loop
for idx in range(y_test.shape[0]):
sample_input = X_test[idx]
sample_truth = [sample_input[-1]] + list(y_test[idx]) # join lists
sample_predicted = [sample_input[-1]] + list(yhat[idx])
line1.set_ydata(sample_input)
line2.set_ydata(sample_truth)
line3.set_ydata(sample_predicted)
fig.canvas.draw()
fig.canvas.flush_events()
pyplot.pause(.25)