Karmaşık bir Radar Grafiğini nasıl oluştururum?


19

Yani, Oyuncu Profili Radar Tablosu şöyle bir şey oluşturmak istiyorum:


resim açıklamasını buraya girin


Sadece her değişkenin ölçeği farklı değil, aynı zamanda daha az aslında iyi anlamına gelen 'mülksüzleştirilmiş' stat gibi bazı istatistikler için tersine çevrilmiş bir ölçek istiyorum.

Her istatistik için değişken ölçek için bir çözüm belki bir kıyaslama belirlemek ve daha sonra 100 ölçeğinde bir puan hesaplamaktır?

Ancak, gerçek sayıları grafikte nasıl görüntülerim? Ayrıca, bazı istatistikler için tersine çevrilmiş ölçeği nasıl alabilirim.

Şu anda Excel'de çalışıyor. Böyle karmaşık bir grafik oluşturmak için en güçlü araç nedir?


Görselleştirmeye çalıştığınız bir veri kümesine örnek verebilir misiniz? Şu anda sorunuz belirsiz. Örnek bir veri kümesi ve görmek istediğiniz karşılık gelen bir çizim sağlamak yardımcı olacaktır. Ayrıca, harici bağlantılar (özellikle twitter gibi geçici web sitelerinden) sağlanması önerilmez, bu nedenle bunu sorunun kendisinde olabildiğince açıklamayı deneyin.
Nitesh

1
Excel en iyisidir (görsel olarak en güzel olanı)! uygulamaları python veya diğer dillerde bulabilirsiniz, ancak bunlar excel kadar büyük değildir. Bir ay önce denedim!
Kasra Manshaei

Kyler'in çözümü harika, ama eksik. Yukarıdaki kod sadece 6 ekseni gösterir ... "Ters% 3" ekseni için 20 değeri bunu çalıştırdığımda çizilmiyor.

Yanıtlar:


13

Vay canına, bu biraz zorlayıcıydı ama bu arazilerden birini python'da yapabildim. İki ana bileşen şunlardır:

kod :

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns # improves plot aesthetics


def _invert(x, limits):
    """inverts a value x on a scale from
    limits[0] to limits[1]"""
    return limits[1] - (x - limits[0])

def _scale_data(data, ranges):
    """scales data[1:] to ranges[0],
    inverts if the scale is reversed"""
    for d, (y1, y2) in zip(data[1:], ranges[1:]):
        assert (y1 <= d <= y2) or (y2 <= d <= y1)
    x1, x2 = ranges[0]
    d = data[0]
    if x1 > x2:
        d = _invert(d, (x1, x2))
        x1, x2 = x2, x1
    sdata = [d]
    for d, (y1, y2) in zip(data[1:], ranges[1:]):
        if y1 > y2:
            d = _invert(d, (y1, y2))
            y1, y2 = y2, y1
        sdata.append((d-y1) / (y2-y1) 
                     * (x2 - x1) + x1)
    return sdata

class ComplexRadar():
    def __init__(self, fig, variables, ranges,
                 n_ordinate_levels=6):
        angles = np.arange(0, 360, 360./len(variables))

        axes = [fig.add_axes([0.1,0.1,0.9,0.9],polar=True,
                label = "axes{}".format(i)) 
                for i in range(len(variables))]
        l, text = axes[0].set_thetagrids(angles, 
                                         labels=variables)
        [txt.set_rotation(angle-90) for txt, angle 
             in zip(text, angles)]
        for ax in axes[1:]:
            ax.patch.set_visible(False)
            ax.grid("off")
            ax.xaxis.set_visible(False)
        for i, ax in enumerate(axes):
            grid = np.linspace(*ranges[i], 
                               num=n_ordinate_levels)
            gridlabel = ["{}".format(round(x,2)) 
                         for x in grid]
            if ranges[i][0] > ranges[i][1]:
                grid = grid[::-1] # hack to invert grid
                          # gridlabels aren't reversed
            gridlabel[0] = "" # clean up origin
            ax.set_rgrids(grid, labels=gridlabel,
                         angle=angles[i])
            #ax.spines["polar"].set_visible(False)
            ax.set_ylim(*ranges[i])
        # variables for plotting
        self.angle = np.deg2rad(np.r_[angles, angles[0]])
        self.ranges = ranges
        self.ax = axes[0]
    def plot(self, data, *args, **kw):
        sdata = _scale_data(data, self.ranges)
        self.ax.plot(self.angle, np.r_[sdata, sdata[0]], *args, **kw)
    def fill(self, data, *args, **kw):
        sdata = _scale_data(data, self.ranges)
        self.ax.fill(self.angle, np.r_[sdata, sdata[0]], *args, **kw)

# example data
variables = ("Normal Scale", "Inverted Scale", "Inverted 2", 
            "Normal Scale 2", "Normal 3", "Normal 4 %", "Inverted 3 %")
data = (1.76, 1.1, 1.2, 
        4.4, 3.4, 86.8, 20)
ranges = [(0.1, 2.3), (1.5, 0.3), (1.3, 0.5),
         (1.7, 4.5), (1.5, 3.7), (70, 87), (100, 10)]            
# plotting
fig1 = plt.figure(figsize=(6, 6))
radar = ComplexRadar(fig1, variables, ranges)
radar.plot(data)
radar.fill(data, alpha=0.2)
plt.show()    

6

İşte bir R sürümü:

Buradaki kodlar ggplot2 için güncel görünmüyor: 2.0.0

Paketimi zmisc'i deneyin: devtools:install_github("jerryzhujian9/ezmisc")

Yükledikten sonra şunları çalıştırabilirsiniz:

df = mtcars
df$model = rownames(mtcars)

ez.radarmap(df, "model", stats="mean", lwd=1, angle=0, fontsize=0.6, facet=T, facetfontsize=1, color=id, linetype=NULL)
ez.radarmap(df, "model", stats="none", lwd=1, angle=0, fontsize=1.5, facet=F, facetfontsize=1, color=id, linetype=NULL)

Ana kodlar http://www.cmap.polytechnique.fr/~lepennec/R/Radar/RadarAndParallelPlots.html adresinden uyarlanmıştır.

resim açıklamasını buraya girin


3

Burada, Kyler Brown'un Python için, kutup eksenleri üzerinde negatif değerlere izin veren ( şu anda matplotlib tarafından resmi olarak desteklenmemektedir ), temel olarak negatif değerlerin kontrolünü basitçe kaldırarak küçük bir değişiklik varset_rgrids :

arsa

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns # improves plot aesthetics


def _invert(x, limits):
    """inverts a value x on a scale from
    limits[0] to limits[1]"""
    return limits[1] - (x - limits[0])

def _scale_data(data, ranges):
    """scales data[1:] to ranges[0],
    inverts if the scale is reversed"""
    # for d, (y1, y2) in zip(data[1:], ranges[1:]):
    for d, (y1, y2) in zip(data, ranges):
        assert (y1 <= d <= y2) or (y2 <= d <= y1)

    x1, x2 = ranges[0]
    d = data[0]

    if x1 > x2:
        d = _invert(d, (x1, x2))
        x1, x2 = x2, x1

    sdata = [d]

    for d, (y1, y2) in zip(data[1:], ranges[1:]):
        if y1 > y2:
            d = _invert(d, (y1, y2))
            y1, y2 = y2, y1

        sdata.append((d-y1) / (y2-y1) * (x2 - x1) + x1)

    return sdata

def set_rgrids(self, radii, labels=None, angle=None, fmt=None,
               **kwargs):
    """
    Set the radial locations and labels of the *r* grids.
    The labels will appear at radial distances *radii* at the
    given *angle* in degrees.
    *labels*, if not None, is a ``len(radii)`` list of strings of the
    labels to use at each radius.
    If *labels* is None, the built-in formatter will be used.
    Return value is a list of tuples (*line*, *label*), where
    *line* is :class:`~matplotlib.lines.Line2D` instances and the
    *label* is :class:`~matplotlib.text.Text` instances.
    kwargs are optional text properties for the labels:
    %(Text)s
    ACCEPTS: sequence of floats
    """
    # Make sure we take into account unitized data
    radii = self.convert_xunits(radii)
    radii = np.asarray(radii)
    rmin = radii.min()
    # if rmin <= 0:
    #     raise ValueError('radial grids must be strictly positive')

    self.set_yticks(radii)
    if labels is not None:
        self.set_yticklabels(labels)
    elif fmt is not None:
        self.yaxis.set_major_formatter(FormatStrFormatter(fmt))
    if angle is None:
        angle = self.get_rlabel_position()
    self.set_rlabel_position(angle)
    for t in self.yaxis.get_ticklabels():
        t.update(kwargs)
    return self.yaxis.get_gridlines(), self.yaxis.get_ticklabels()

class ComplexRadar():
    def __init__(self, fig, variables, ranges,
                 n_ordinate_levels=6):
        angles = np.arange(0, 360, 360./len(variables))

        axes = [fig.add_axes([0.1,0.1,0.9,0.9],polar=True,
                label = "axes{}".format(i)) 
                for i in range(len(variables))]
        l, text = axes[0].set_thetagrids(angles, 
                                         labels=variables)
        [txt.set_rotation(angle-90) for txt, angle 
             in zip(text, angles)]
        for ax in axes[1:]:
            ax.patch.set_visible(False)
            ax.grid("off")
            ax.xaxis.set_visible(False)
        for i, ax in enumerate(axes):
            grid = np.linspace(*ranges[i], 
                               num=n_ordinate_levels)
            gridlabel = ["{}".format(round(x,2)) 
                         for x in grid]
            if ranges[i][0] > ranges[i][1]:
                grid = grid[::-1] # hack to invert grid
                          # gridlabels aren't reversed
            gridlabel[0] = "" # clean up origin
            # ax.set_rgrids(grid, labels=gridlabel, angle=angles[i])
            set_rgrids(ax, grid, labels=gridlabel, angle=angles[i])
            #ax.spines["polar"].set_visible(False)
            ax.set_ylim(*ranges[i])
        # variables for plotting
        self.angle = np.deg2rad(np.r_[angles, angles[0]])
        self.ranges = ranges
        self.ax = axes[0]
    def plot(self, data, *args, **kw):
        sdata = _scale_data(data, self.ranges)
        self.ax.plot(self.angle, np.r_[sdata, sdata[0]], *args, **kw)
    def fill(self, data, *args, **kw):
        sdata = _scale_data(data, self.ranges)
        self.ax.fill(self.angle, np.r_[sdata, sdata[0]], *args, **kw)

# example data
variables = ("Normal Scale", "Inverted Scale", "Inverted 2", 
            "Normal Scale 2", "Normal 3", "Normal 4 %", "Inverted 3 %")
data = (-1.76, 1.1, 1.2, 
        4.4, 3.4, 86.8, 20)
ranges = [(-5, 3), (1.5, 0.3), (1.3, 0.5),
         (1.7, 4.5), (1.5, 3.7), (70, 87), (100, -50)]            
# plotting
fig1 = plt.figure(figsize=(6, 6))
radar = ComplexRadar(fig1, variables, ranges)
radar.plot(data)
radar.fill(data, alpha=0.2)
plt.show()
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.