Masa ve bacaklarındaki kuvvetleri nasıl hesaplayabilirim?


12

Bir masa için bir tasarımım var ve sadece ne kadar güçlü olacağını tahmin etmek istemiyorum, ama zaten bildiğim varsayılmayan tüm güçlerin nasıl çözüleceğine dair bir açıklama bulamıyorum. mühendislik hakkında çok şey var.

Peki, masanın ön köşesine 300lbf (1334 newton) düz olarak uygulayacak olsaydım, masaüstünden dik kirişlere, çapraz köşebentlere, zemine olan stresi nasıl hesaplayabilirim?

A500 çeliği varsayalım, 1x2x16ga.

diyagramlar


4
"Kuvvet" ve "güç" arasında kafanız karışmış gibi görünüyor. Masada olacak kuvvetleri hesaplamak, ne kadar güçlü olacağını söylemez, ancak ne kadar güçlü olması gerektiğini size söyler. Lütfen gerçekten aradığınız soruyu netleştirin.
AndyT

1
Bu göründüğünden daha karmaşıktır ve muhtemelen bu mekanda sorunuza tatmin edici bir cevap almak oldukça zor olacaktır (belki de imkansız olmayabilir). Size bunu nasıl yapacağınızı öğretmede çok yol kat edecek olan çalışma alanına Statik denir. Şimdi çevrimiçi ücretsiz Statikler / Katıların Mekaniği dersleri var. İşte iyi bir tane.
Rick, Monica

2
Söylenenleri tekrarlamak ve genişletmek için mühendislik bilgisini almayan bilgileri bulamazsınız çünkü mühendislik bilgisine ihtiyacınız vardır. Bu zor bir statik problemi değil, ama kesinlikle bir statik problemi ve sadece lineer kuvvetlerden daha fazlası, bükülme anları da var. Muhtemelen doğrusal kuvvetleri doğru şekilde hesaplayarak çoğunu ortadan kaldırabilirsiniz, ancak bunu bir Statik kursunda yapmayı öğrenirsiniz. Biraz daha zamanım olduğunda, bir cevapla daha derinlemesine gidebilirim, ama bunun düşündüğünüz kadar basit olmadığını biliyorum.
Trevor Archibald

1
Üzgünüm, sadece pound-kuvvet, 1334 Newton'a eşit.
mordac

2
Bu soru hala belirsiz. "Kuvvet", "güç" ve "stres" i karıştırır. Bunlar farklı terimler! "masaüstünden dik kirişlere doğru stres" herhangi bir gramer anlam ifade etmez. Ayrıca, uzmanların uzmanlara soru sormaları için bir site olması gerekiyordu; Korkarım asıl analiz (soru netleştirildiyse) temel statiktir.
AndyT

Yanıtlar:


4

Öncelikle yatay yüzeylerinizin her birini varsayıyorum: masaüstü ve üç benliğin her biri aynı malzemeden yapılmıştır. Saçma ve abartılı bir kasa kullanmak için, masaüstü yarısı ağır mermer değilse ve sağ tarafı hafif balsa ağacı değilse sol yarısı. Masaüstü tek tip bir malzemeden oluşur ve her bir ben kendi tek tip malzemesinden yapılır: ahşap, cam, metal, sunta ve laminex, kontrplak, her neyse.

Gösterildiği gibi, rafların ve masaların her biri bağımsız olarak bacaklar gibi hareket eden dikey desteklere tutturulmuştur. Bu nedenle, her yatay yüzeyin ağırlığı doğrudan dikey desteklere aktarılır. Tüm yatay yüzeyler, eşit ağırlık dağılımına sahip tek tip malzemelerden yapılmıştır. Sonuç olarak, her bacak tüm yatay yüzeylerin birleşik ağırlığının yarısını taşır.

Her bacağın üzerinde olanın tam ağırlığını deneyimleyen bölümü, iki üçgen parantez arasındaki kısa bölümdür: biri masaüstü için ve diğeri masanın standı / ayağı için.

Bacağın bu kısa bölümlerinin her birindeki stres, her bacağın taşıdığı ağırlık, bacağın z düzlemindeki enine kesit alanına bölünmesi (bacağın genişliğine göre genişliği) olacaktır

Masaüstü desteğinin eğimli kısmı, masaüstünün ağırlığının bir kısmını taşıyacaktır. Oysa masaüstü desteğinin kısa dikey kısmı, dikey desteğin tüm ağırlığını masaüstünün, üç rafın ve masaüstünün ağırlığının bir kısmını taşır. Taşınan masaüstü ağırlığının oranının ne olacağı, dikey destekten dikey (normal) mesafeye bağlı olacaktır.

Benzer şekilde, bacağın tabanında, üçgen destek, üçgen konfigürasyonunuza göre ayaktaki yükü yeniden dağıtacaktır.

Bu, tasarımınızla ilgili şeylerin nasıl düşünüleceğine genel bir bakış niteliğindedir. @Rick Teachey'in belirttiği gibi, gerçekten statikte bir ders yapmanız, ağırlıkların ve desteklerin kesit boyutlarının sayısını almanız ve hepsini bazı formüllere takmanız gerekir.


3

Masanın köşesine uygulanan bir yük ile ne olacağını bilmek istediğiniz için, bu köşedeki bacağın tek başına yüke karşı koyduğu varsayılarak, bu soruyu iki boyuta basitleştireceğim. Çelik elemanların sertliğinin, ahşap masaüstünden daha büyük büyüklük emirleri olduğu düşünüldüğünde, bu muhtemelen gerçeklerden çok uzak değildir.

Ayrıca, masanın kendi ağırlığına sahip olmayan sihirli malzemelerden yapıldığını ve masanın başka şeylerden boş olduğunu, sadece işleri basit tutmak için olduğunu varsayacağım. Ayrıca, diğerlerinin de belirttiği gibi, bazı statik bilgi olmadan bunu yapmak imkansızdır. Burada tam bir ders veremem, ama işleri elimden geldiğince açıklayacağım.

Etkili bir şekilde sahip olduğunuz yapı aşağıdaki gibidir (ayaktan sonra masanın kuyruk ucunu, alakasız olan ve ayağın tabanındaki diyagonalin kaldırılması, sadece sorunları karmaşık hale getirir ve ilgili iç gerilmeleri değiştirmez): resim açıklamasını buraya girin

Bu özel durum aslında elle çözülebilir, işte burada: Tablonun en kenarındaki yük ve diyagonalden 'dir. Bu, kirişin eğilme momentine ve uygulanan yüküne eşit bir kesme kuvvetine dayanması gerektiği anlamına gelir (işaret ettiği için negatif aşağı).12 inç = 1 ft M = 300 1 = 300 ft-lb Q = - 300 lb300lb12in=1ftM=3001=300ft-lbQ=300lb

Şimdi diyagonalin yatay kirişe yardım etmeye başladığı noktadayız, bu yüzden her birine ne kadar kuvvet gittiğini bulmamız gerekiyor. Bunun için biraz ileriye bakmalıyız ve yatay kirişin sütunu başka bir sabitlenmiş eklemde (şekilde "toplar") karşıladığını fark etmeliyiz. Bu eklemler parçaların birbirine göre dönmesine izin verir, bu da (ve bu statikte öğrendiğiniz bir şeydir) o noktadaki bükülme momentinin sıfır olduğu anlamına gelir. Bu boyunca başka harici yük uygulanmadığından20in(yatay çubuğun köşegen ve kolon ile bağlantısı arasında), kesme kuvveti bu germe boyunca sabit olmalıdır. Kesme kuvveti eğilme momentinin türevi olduğu için moment doğrusal olarak değişmelidir. Ve köşegen yataya sabitlendiğinden ("top" bağlantısı), hiçbir anı çalmadı. Bu, yatay kirişin, diyagonalin başlangıcında 300 eğilme anından sütunda sıfıra gittiği anlamına gelir. Bu germe boyunca sabit kesme kuvveti, bu doğrusal varyasyonun tanjantına eşittir;

Q=300ft-lb20in=53ft=180lb
.

Yani, yatay ve diyagonal arasındaki bağlantıya geri dönersek, yatay kiriş kaydırma gücü gitti biliyoruz için . Bu, diyagonalin yatay üzerine değerine eşit bir dikey kuvvet uygulamış olması gerektiği anlamına gelir . Bununla birlikte, diyagonal her iki uca sabitlendiğinden ve üzerine harici yük uygulanmadığından, sadece eksenel yükler içerebilir. Bu nin aslında diyagonal tarafından uygulanan kuvvetin sadece bir bileşeni olduğu anlamına gelir . Yatay bileşen tanjant tarafından kolayca bulunabilir ve eşittir . Diyagonal üzerindeki toplam eksenel kuvvet Pythogoras tarafından bulunabilir:+ 180 lb + 480 lb 480 lb 480 20300lb+180lb+480lb480lb480205=1920lb1920lb4802+19202=1979lb ve sıkıştırılmış . Bu arada, bu kuvvetin yatay bileşeni bu nedenle uğrar yatay kiriş ile bağlanmış olması gereken gerilim arasında .1920lb

Şimdi geriye kalan tek sütun. Yatay kiriş gerginliğine maruz kaldığından, sütun tarafından emilmesi gerekir, bu da bu gerilimi . Bununla birlikte, bu kesme, aynı kuvveti uygulayan diyagonal bağlantı ile iptal edilir (ancak farklı bir tarafa, bu nedenle farklı bir işaret ... statik ile ). Bununla birlikte, bu noktalar arasında, makas canlı ve iyidir. Ve makaslama olduğu yerde, eğilme momenti var. üzerinde sabit bir kesme bükme momenti oluşturur1920 lb 1920 lb 5 in 1920 51920lb1920lb1920lb5in1920512=800ft-lb. Kolonun tabanı ile diyagonalin bağlantısı arasında artık herhangi bir kesme yoktur, bu nedenle an sabittir.

Ayrıca, yatay kirişte , eşit değere sahip eksenel bir gerilim olarak sütuna iletilen vardı ( bu kısmı gerilir, ezilmez!). Bununla birlikte, yatay bileşenini de diyagonal bağlantıdan sonra (yukarıda olduğu için üstte pozitifti. Burada işaret ediyor, bu yüzden negatif). Bu nedenle, taban ve köşegen arasında, sütun sıkıştırmasına maruz kalır, bu da sütunun o kısmının tablonun kenarına uygulanan tüm dış yüke dayanması gerektiğinden mantıklıdır. Sıkıştırılması uygulanan yüke eşit olmasaydı, bir şeyler yanlış olurdu.- 480 lb 300 lb+180lb480lb300lb

Günün sonunda, aşağıdakilerden geçen bir yapı elde edersiniz (genişletmek için tıklayın): Iç kuvvetler

Ancak, iç güçleri bilmek masanızın onu destekleyip desteklemeyeceğini bilmek için yeterli değildir. Bununla birlikte, bu, yaşadığınız yere ve hangi kodların geçerli olduğuna bağlıdır (ve eminim masalar yapısal kodları takip etmek zorunda değilim, ancak bazı ilgili kodlar olduğundan eminim) ve burada yeterince cevap verilemez.

Bununla birlikte, gerginlik ve makaslama için genellikle çok az gizem vardır. Gerilim için, çekme kuvvetini kesit alanına bölün ve bu gerilimi çeliğin mukavemeti ile karşılaştırın (en zayıf A500 45ksi'dir), bazı güvenlik faktörleriyle (izin verilen stres tasarımı genellikle çeliğin mukavemetinin% 60'ını kullanır). Kesme için, kesme kuvvetini, sizin durumunuzda kesitlerin "dikey" kenarlarının alanına eşit olan "kesme alanı" ile bölün. Bu size çeliğin mukavemeti ile karşılaştırılması gereken kesme gerilimi verir (izin verilen baskı tasarımı, çekme mukavemetinin% 40'ını kullanır).

Bununla birlikte, bükülme ve sıkıştırma, burkulma riski nedeniyle daha karmaşıktır ve ilgili kodlarla yapılması gerekir. Bir kişi burkulmayı görmezden gelirse ( gerçekten olmamalı), o zaman sadece ilgili stresi almak ve tekrar güçle karşılaştırmak meselesidir. Sıkıştırma için, bu gerginlikle aynıdır. Bükme için, maksimum gerginlik / sıkıştırma stresini (aşağıya bakın) elde etmek için bükülme momentini elastik modülle bölün ve izin verilen stresle karşılaştırın:

σ=6Mh1b1h13b2h23

Ve değerinde ne olursa olsun, ayağın tabanındaki köşegen burkulma analizi için uygun olabilir, ancak tahmin etmeliydim, yatay kirişin yardımcı çapraz dirseğinin kontrol elemanı (burkulma için) olacağını söyleyebilirdim.


1

İstediğiniz şey bir statik analizi veya bir mühendisin "Malzemelerin Mekaniği" dersinde öğreneceği bir şeydir. 300 lb kuvvetin bir sonucu olarak masa elemanlarına ne kadar stres uygulandığını ve yükü kaldırabileceğini bilmeniz gerekir.

Ben var masanın üzerine çapraz kiriş desteği için bu sorunu çözmüş . Bununla birlikte, en yüksek yük, yükün sonunda olduğu zaman değil, yük doğrudan üstündeyken destek elemanında görülür.

Analiz kalan üyeler için yapılabilir, ancak kapsamlı bir analiz yapmak için bağlantı noktalarına bakmanız gerekir, çünkü bunlar olası boğulma noktaları olacaktır.

Yukarıda bağlantı verilen belge, geliştirdiğim CADWOLF platformunda yapıldı. Ortaya çıkan kuvvetleri görmek için yükü değiştirebilirsiniz.

Tarif ettiğiniz yükün sonucu, masayı destekleyen travers üzerinde 74.49 lbf'lik bir yük ve masanın bacaklara bağlandığı noktada 274.5 lbf'lik bir reaksiyon kuvvetidir.

Belgede, bu sonuçları elde etmek için güçlerin ve momentlerin toplanması süreci açıklanmaktadır. Aynı işlem, dikey bacakları alt yatay bacaklara bağlayan çapraz eleman üzerindeki yükü hesaplamak için çapraz eleman üzerindeki yükler ve gerici kuvvet ile kullanılabilir.


0

Autodesk Inventor'ın 3 yıllık ücretsiz öğrenci sürümünü edindim (çünkü aşina olduğum için SolidWorks, CATIA, aynı zamanda çalışıyor). Ardından masayı modelleyin ve statik analiz gerçekleştirin . A0 sayfalarındaki kuvvet diyagramları günleri çoktan gitti.


1
Bu OP'nin ilgilendikleri analizin gerçekleştirilmesiyle ilgili ilkeleri anlamasına nasıl yardımcı olur? Bir alete sahip olmak, aracın nasıl kullanılacağına dair bilgi vermez.

@ GlenH7, elbette OP'nin aracın nasıl kullanılacağını anlaması gerekecek. O andan itibaren, simülasyon-düzeltme-simülasyon döngüleri yapabilecektir. Ayrıca, statik bilgisi kesin olarak sonuçların analizine büyük ölçüde yardımcı olacaktır.
Vorac
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.