İyi şekil eşleşmesi için uygun projeksiyonlar kullanmak istiyorsunuz. Bu amaçla, ilk çözüm için Transvers Mercator'dan daha iyi hiçbir şey yoktur (birlikte dikişler). Neredeyse tüm CBS'ler bu tür 60 parçadan oluşan eksiksiz bir sistemle geliyor: UTM bölgeleri. UTM ayrıca, ince tabakaların kutuplarda yakınsaması için bir çözüm sunar: dünyanın üstünde ve altında iki kapak olarak yapıştırabileceğiniz kutup azimut çıkıntılarını içerir. Daha az parça kullanmak istiyorsanız bu yöntemi uyarlayabilirsiniz; örneğin, 20 parçalı (artı 2 kapaklı) bir çözelti için her iki tarafta 6 derece genişleyen her üç UTM bölgesini alın.
Evet, polyhedra kullanabilirsiniz. Düzenli katılara karşılık gelmeleri bile gerekmez; İstediğiniz kadar düzensiz olabilirler. Sorun, doğru temel nokta kümesini seçmek, çokgenleri kesmek ve (şablonu katlanmış ve yapıştırılmış bir görüntü olarak yazdırmak istiyorsanız) çıkıntılara göre yönlendirmek olur: GIS eğik çıkıntıların tam olarak ele alınması gerekir. Birkaç CBS şu anda bunu yapıyor (ArcGIS, AFAIK yapmaz).
Çok kuşaklı diseksiyonların köşeleri, uzun süre boyunca geometrik olarak işlenebilir. Birçoğu veri kümesi olarak kullanılabilir. Bunları muhtemelen eski SIGGRAPH arşivlerinde bulabilirsiniz. Mathematica , örneğin 195 polyhedra için koordinatlarla (ve topolojik bağlantılarla) dağıtılır. (Koordinatlar cebirsel olarak Kartezyen koordinatlarda verilmiştir, ancak bunlar kolayca sayısal olarak değerlendirilir ve eşmerkezli bir küreye radyal olarak yansıtılır.) Örneğin, bir küre üzerine çıkıntı yapan “İşte MetabigyrateRhombicosidodecahedron”;
ve onun "net image:"
Koordinatlarını ister misin? Wolfram Alpha'ya danışın .