TL; DR
Marjinal olarak daha verimli bir çözüm bulmak için çok çaba. Basitliği feda ederken, eklenen karmaşıklığı haklı çıkarmak zordf.drop(dlst, 1, errors='ignore')
df.reindex_axis(np.setdiff1d(df.columns.values, dlst), 1)
Önsöz
Bir sütunun silinmesi anlamsal olarak diğer sütunları seçmekle aynıdır. Dikkate alınması gereken birkaç ek yöntem daha göstereceğim.
Aynı anda birden fazla sütunu silme ve mevcut olmayan sütunları silme girişimine izin verme genel çözümüne de odaklanacağım.
Bu çözümleri kullanmak geneldir ve basit durumlar için de işe yarayacaktır.
Kurulum Silinecek ve listeyi
düşününpd.DataFrame
df
dlst
df = pd.DataFrame(dict(zip('ABCDEFGHIJ', range(1, 11))), range(3))
dlst = list('HIJKLM')
df
A B C D E F G H I J
0 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 1 2 3 4 5 6 7 8 9 10
dlst
['H', 'I', 'J', 'K', 'L', 'M']
Sonuç şöyle görünmelidir:
df.drop(dlst, 1, errors='ignore')
A B C D E F G
0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 1 2 3 4 5 6 7
Bir sütunu diğer sütunları seçmek için sildiğim için, onu iki türe ayırırım:
- Etiket seçimi
- Boole seçimi
Etiket Seçimi
Saklamak istediğimiz sütunları temsil eden ve silmek istediğimiz sütunlar olmadan etiket listesini / etiket dizisini üreterek başlıyoruz.
df.columns.difference(dlst)
Index(['A', 'B', 'C', 'D', 'E', 'F', 'G'], dtype='object')
np.setdiff1d(df.columns.values, dlst)
array(['A', 'B', 'C', 'D', 'E', 'F', 'G'], dtype=object)
df.columns.drop(dlst, errors='ignore')
Index(['A', 'B', 'C', 'D', 'E', 'F', 'G'], dtype='object')
list(set(df.columns.values.tolist()).difference(dlst))
# does not preserve order
['E', 'D', 'B', 'F', 'G', 'A', 'C']
[x for x in df.columns.values.tolist() if x not in dlst]
['A', 'B', 'C', 'D', 'E', 'F', 'G']
Etiketlerden Sütunlar
Seçim sürecini karşılaştırmak için:
cols = [x for x in df.columns.values.tolist() if x not in dlst]
Sonra değerlendirebiliriz
df.loc[:, cols]
df[cols]
df.reindex(columns=cols)
df.reindex_axis(cols, 1)
Tüm bunlar aşağıdakileri değerlendirir:
A B C D E F G
0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 1 2 3 4 5 6 7
Boole Dilimi
Dilimleme için bir dizi / booleans listesi oluşturabiliriz
~df.columns.isin(dlst)
~np.in1d(df.columns.values, dlst)
[x not in dlst for x in df.columns.values.tolist()]
(df.columns.values[:, None] != dlst).all(1)
Boolean sütunlar
kıyaslamalar için
bools = [x not in dlst for x in df.columns.values.tolist()]
df.loc[: bools]
Tüm bunlar aşağıdakileri değerlendirir:
A B C D E F G
0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 1 2 3 4 5 6 7
Sağlam Zamanlama
Fonksiyonlar
setdiff1d = lambda df, dlst: np.setdiff1d(df.columns.values, dlst)
difference = lambda df, dlst: df.columns.difference(dlst)
columndrop = lambda df, dlst: df.columns.drop(dlst, errors='ignore')
setdifflst = lambda df, dlst: list(set(df.columns.values.tolist()).difference(dlst))
comprehension = lambda df, dlst: [x for x in df.columns.values.tolist() if x not in dlst]
loc = lambda df, cols: df.loc[:, cols]
slc = lambda df, cols: df[cols]
ridx = lambda df, cols: df.reindex(columns=cols)
ridxa = lambda df, cols: df.reindex_axis(cols, 1)
isin = lambda df, dlst: ~df.columns.isin(dlst)
in1d = lambda df, dlst: ~np.in1d(df.columns.values, dlst)
comp = lambda df, dlst: [x not in dlst for x in df.columns.values.tolist()]
brod = lambda df, dlst: (df.columns.values[:, None] != dlst).all(1)
Test yapmak
res1 = pd.DataFrame(
index=pd.MultiIndex.from_product([
'loc slc ridx ridxa'.split(),
'setdiff1d difference columndrop setdifflst comprehension'.split(),
], names=['Select', 'Label']),
columns=[10, 30, 100, 300, 1000],
dtype=float
)
res2 = pd.DataFrame(
index=pd.MultiIndex.from_product([
'loc'.split(),
'isin in1d comp brod'.split(),
], names=['Select', 'Label']),
columns=[10, 30, 100, 300, 1000],
dtype=float
)
res = res1.append(res2).sort_index()
dres = pd.Series(index=res.columns, name='drop')
for j in res.columns:
dlst = list(range(j))
cols = list(range(j // 2, j + j // 2))
d = pd.DataFrame(1, range(10), cols)
dres.at[j] = timeit('d.drop(dlst, 1, errors="ignore")', 'from __main__ import d, dlst', number=100)
for s, l in res.index:
stmt = '{}(d, {}(d, dlst))'.format(s, l)
setp = 'from __main__ import d, dlst, {}, {}'.format(s, l)
res.at[(s, l), j] = timeit(stmt, setp, number=100)
rs = res / dres
rs
10 30 100 300 1000
Select Label
loc brod 0.747373 0.861979 0.891144 1.284235 3.872157
columndrop 1.193983 1.292843 1.396841 1.484429 1.335733
comp 0.802036 0.732326 1.149397 3.473283 25.565922
comprehension 1.463503 1.568395 1.866441 4.421639 26.552276
difference 1.413010 1.460863 1.587594 1.568571 1.569735
in1d 0.818502 0.844374 0.994093 1.042360 1.076255
isin 1.008874 0.879706 1.021712 1.001119 0.964327
setdiff1d 1.352828 1.274061 1.483380 1.459986 1.466575
setdifflst 1.233332 1.444521 1.714199 1.797241 1.876425
ridx columndrop 0.903013 0.832814 0.949234 0.976366 0.982888
comprehension 0.777445 0.827151 1.108028 3.473164 25.528879
difference 1.086859 1.081396 1.293132 1.173044 1.237613
setdiff1d 0.946009 0.873169 0.900185 0.908194 1.036124
setdifflst 0.732964 0.823218 0.819748 0.990315 1.050910
ridxa columndrop 0.835254 0.774701 0.907105 0.908006 0.932754
comprehension 0.697749 0.762556 1.215225 3.510226 25.041832
difference 1.055099 1.010208 1.122005 1.119575 1.383065
setdiff1d 0.760716 0.725386 0.849949 0.879425 0.946460
setdifflst 0.710008 0.668108 0.778060 0.871766 0.939537
slc columndrop 1.268191 1.521264 2.646687 1.919423 1.981091
comprehension 0.856893 0.870365 1.290730 3.564219 26.208937
difference 1.470095 1.747211 2.886581 2.254690 2.050536
setdiff1d 1.098427 1.133476 1.466029 2.045965 3.123452
setdifflst 0.833700 0.846652 1.013061 1.110352 1.287831
fig, axes = plt.subplots(2, 2, figsize=(8, 6), sharey=True)
for i, (n, g) in enumerate([(n, g.xs(n)) for n, g in rs.groupby('Select')]):
ax = axes[i // 2, i % 2]
g.plot.bar(ax=ax, title=n)
ax.legend_.remove()
fig.tight_layout()
Bu, çalıştırmak için geçen süreye göredir df.drop(dlst, 1, errors='ignore')
. Tüm bu çabalardan sonra, performansı sadece mütevazı bir şekilde geliştiriyoruz gibi görünüyor.
Aslında en iyi çözümler reindex
veya reindex_axis
kesmek üzerinde kullanın list(set(df.columns.values.tolist()).difference(dlst))
. Yakın bir ikinci ve hala çok marjinal daha iyi drop
olduğunu np.setdiff1d
.
rs.idxmin().pipe(
lambda x: pd.DataFrame(
dict(idx=x.values, val=rs.lookup(x.values, x.index)),
x.index
)
)
idx val
10 (ridx, setdifflst) 0.653431
30 (ridxa, setdifflst) 0.746143
100 (ridxa, setdifflst) 0.816207
300 (ridx, setdifflst) 0.780157
1000 (ridxa, setdifflst) 0.861622