Java ve C # 'da istisna performansı istenecek çok şey bırakıyor.
Programcılar olarak bu, bizi pratik performans nedenlerinden ötürü, "istisnalara nadiren neden olunmalıdır" kuralıyla yaşamaya zorluyor.
Ancak, bilgisayar bilimcileri olarak, bu sorunlu duruma karşı isyan etmeliyiz. Bir işlevi yazan kişinin genellikle ne sıklıkta çağrılacağı veya başarı veya başarısızlığın daha muhtemel olup olmadığı hakkında hiçbir fikri yoktur. Yalnızca arayan kişi bu bilgiye sahiptir. İstisnalardan kaçınmaya çalışmak, bazı durumlarda yalnızca temiz ama yavaş istisna sürümlerine sahip olduğumuz belirsiz bazı API idomlarına yol açar ve diğer durumlarda hızlı ancak tıkalı dönüş değeri hatalarımız vardır ve yine de diğer durumlarda her ikisiyle de sonuçlanırız . Kütüphane uygulayıcısının iki API sürümü yazması ve bakımını yapması gerekebilir ve arayan her durumda iki sürümden hangisinin kullanılacağına karar vermelidir.
Bu biraz karışıklık. İstisnalar daha iyi performans gösterdiyse, bu aksak deyimleri önleyebilir ve istisnaları kullanılması gerektiği gibi kullanabiliriz ... yapılandırılmış bir hata geri dönüş tesisi olarak.
Dönüş değerlerine daha yakın teknikler kullanılarak uygulanan istisna mekanizmalarını gerçekten görmek istiyorum, bu yüzden değerleri döndürmek için daha yakın performansa sahip olabiliriz.
İstisna performansını hata-dönüş değeri performansıyla karşılaştıran bir kod örneği.
herkese açık sınıf TestIt {
int value;
public int getValue() {
return value;
}
public void reset() {
value = 0;
}
public boolean baseline_null(boolean shouldfail, int recurse_depth) {
if (recurse_depth <= 0) {
return shouldfail;
} else {
return baseline_null(shouldfail,recurse_depth-1);
}
}
public boolean retval_error(boolean shouldfail, int recurse_depth) {
if (recurse_depth <= 0) {
if (shouldfail) {
return false;
} else {
return true;
}
} else {
boolean nested_error = retval_error(shouldfail,recurse_depth-1);
if (nested_error) {
return true;
} else {
return false;
}
}
}
public void exception_error(boolean shouldfail, int recurse_depth) throws Exception {
if (recurse_depth <= 0) {
if (shouldfail) {
throw new Exception();
}
} else {
exception_error(shouldfail,recurse_depth-1);
}
}
public static void main(String[] args) {
int i;
long l;
TestIt t = new TestIt();
int failures;
int ITERATION_COUNT = 100000000;
// (0) baseline null workload
for (int recurse_depth = 2; recurse_depth <= 10; recurse_depth+=3) {
for (float exception_freq = 0.0f; exception_freq <= 1.0f; exception_freq += 0.25f) {
int EXCEPTION_MOD = (exception_freq == 0.0f) ? ITERATION_COUNT+1 : (int)(1.0f / exception_freq);
failures = 0;
long start_time = System.currentTimeMillis();
t.reset();
for (i = 1; i < ITERATION_COUNT; i++) {
boolean shoulderror = (i % EXCEPTION_MOD) == 0;
t.baseline_null(shoulderror,recurse_depth);
}
long elapsed_time = System.currentTimeMillis() - start_time;
System.out.format("baseline: recurse_depth %s, exception_freqeuncy %s (%s), time elapsed %s ms\n",
recurse_depth, exception_freq, failures,elapsed_time);
}
}
// (1) retval_error
for (int recurse_depth = 2; recurse_depth <= 10; recurse_depth+=3) {
for (float exception_freq = 0.0f; exception_freq <= 1.0f; exception_freq += 0.25f) {
int EXCEPTION_MOD = (exception_freq == 0.0f) ? ITERATION_COUNT+1 : (int)(1.0f / exception_freq);
failures = 0;
long start_time = System.currentTimeMillis();
t.reset();
for (i = 1; i < ITERATION_COUNT; i++) {
boolean shoulderror = (i % EXCEPTION_MOD) == 0;
if (!t.retval_error(shoulderror,recurse_depth)) {
failures++;
}
}
long elapsed_time = System.currentTimeMillis() - start_time;
System.out.format("retval_error: recurse_depth %s, exception_freqeuncy %s (%s), time elapsed %s ms\n",
recurse_depth, exception_freq, failures,elapsed_time);
}
}
// (2) exception_error
for (int recurse_depth = 2; recurse_depth <= 10; recurse_depth+=3) {
for (float exception_freq = 0.0f; exception_freq <= 1.0f; exception_freq += 0.25f) {
int EXCEPTION_MOD = (exception_freq == 0.0f) ? ITERATION_COUNT+1 : (int)(1.0f / exception_freq);
failures = 0;
long start_time = System.currentTimeMillis();
t.reset();
for (i = 1; i < ITERATION_COUNT; i++) {
boolean shoulderror = (i % EXCEPTION_MOD) == 0;
try {
t.exception_error(shoulderror,recurse_depth);
} catch (Exception e) {
failures++;
}
}
long elapsed_time = System.currentTimeMillis() - start_time;
System.out.format("exception_error: recurse_depth %s, exception_freqeuncy %s (%s), time elapsed %s ms\n",
recurse_depth, exception_freq, failures,elapsed_time);
}
}
}
}
İşte sonuçlar:
baseline: recurse_depth 2, exception_freqeuncy 0.0 (0), time elapsed 683 ms
baseline: recurse_depth 2, exception_freqeuncy 0.25 (0), time elapsed 790 ms
baseline: recurse_depth 2, exception_freqeuncy 0.5 (0), time elapsed 768 ms
baseline: recurse_depth 2, exception_freqeuncy 0.75 (0), time elapsed 749 ms
baseline: recurse_depth 2, exception_freqeuncy 1.0 (0), time elapsed 731 ms
baseline: recurse_depth 5, exception_freqeuncy 0.0 (0), time elapsed 923 ms
baseline: recurse_depth 5, exception_freqeuncy 0.25 (0), time elapsed 971 ms
baseline: recurse_depth 5, exception_freqeuncy 0.5 (0), time elapsed 982 ms
baseline: recurse_depth 5, exception_freqeuncy 0.75 (0), time elapsed 947 ms
baseline: recurse_depth 5, exception_freqeuncy 1.0 (0), time elapsed 937 ms
baseline: recurse_depth 8, exception_freqeuncy 0.0 (0), time elapsed 1154 ms
baseline: recurse_depth 8, exception_freqeuncy 0.25 (0), time elapsed 1149 ms
baseline: recurse_depth 8, exception_freqeuncy 0.5 (0), time elapsed 1133 ms
baseline: recurse_depth 8, exception_freqeuncy 0.75 (0), time elapsed 1117 ms
baseline: recurse_depth 8, exception_freqeuncy 1.0 (0), time elapsed 1116 ms
retval_error: recurse_depth 2, exception_freqeuncy 0.0 (0), time elapsed 742 ms
retval_error: recurse_depth 2, exception_freqeuncy 0.25 (24999999), time elapsed 743 ms
retval_error: recurse_depth 2, exception_freqeuncy 0.5 (49999999), time elapsed 734 ms
retval_error: recurse_depth 2, exception_freqeuncy 0.75 (99999999), time elapsed 723 ms
retval_error: recurse_depth 2, exception_freqeuncy 1.0 (99999999), time elapsed 728 ms
retval_error: recurse_depth 5, exception_freqeuncy 0.0 (0), time elapsed 920 ms
retval_error: recurse_depth 5, exception_freqeuncy 0.25 (24999999), time elapsed 1121 ms
retval_error: recurse_depth 5, exception_freqeuncy 0.5 (49999999), time elapsed 1037 ms
retval_error: recurse_depth 5, exception_freqeuncy 0.75 (99999999), time elapsed 1141 ms
retval_error: recurse_depth 5, exception_freqeuncy 1.0 (99999999), time elapsed 1130 ms
retval_error: recurse_depth 8, exception_freqeuncy 0.0 (0), time elapsed 1218 ms
retval_error: recurse_depth 8, exception_freqeuncy 0.25 (24999999), time elapsed 1334 ms
retval_error: recurse_depth 8, exception_freqeuncy 0.5 (49999999), time elapsed 1478 ms
retval_error: recurse_depth 8, exception_freqeuncy 0.75 (99999999), time elapsed 1637 ms
retval_error: recurse_depth 8, exception_freqeuncy 1.0 (99999999), time elapsed 1655 ms
exception_error: recurse_depth 2, exception_freqeuncy 0.0 (0), time elapsed 726 ms
exception_error: recurse_depth 2, exception_freqeuncy 0.25 (24999999), time elapsed 17487 ms
exception_error: recurse_depth 2, exception_freqeuncy 0.5 (49999999), time elapsed 33763 ms
exception_error: recurse_depth 2, exception_freqeuncy 0.75 (99999999), time elapsed 67367 ms
exception_error: recurse_depth 2, exception_freqeuncy 1.0 (99999999), time elapsed 66990 ms
exception_error: recurse_depth 5, exception_freqeuncy 0.0 (0), time elapsed 924 ms
exception_error: recurse_depth 5, exception_freqeuncy 0.25 (24999999), time elapsed 23775 ms
exception_error: recurse_depth 5, exception_freqeuncy 0.5 (49999999), time elapsed 46326 ms
exception_error: recurse_depth 5, exception_freqeuncy 0.75 (99999999), time elapsed 91707 ms
exception_error: recurse_depth 5, exception_freqeuncy 1.0 (99999999), time elapsed 91580 ms
exception_error: recurse_depth 8, exception_freqeuncy 0.0 (0), time elapsed 1144 ms
exception_error: recurse_depth 8, exception_freqeuncy 0.25 (24999999), time elapsed 30440 ms
exception_error: recurse_depth 8, exception_freqeuncy 0.5 (49999999), time elapsed 59116 ms
exception_error: recurse_depth 8, exception_freqeuncy 0.75 (99999999), time elapsed 116678 ms
exception_error: recurse_depth 8, exception_freqeuncy 1.0 (99999999), time elapsed 116477 ms
Dönüş değerlerini kontrol etmek ve yaymak, taban-sıfır çağrısına karşı biraz maliyet ekler ve bu maliyet, çağrı derinliği ile orantılıdır. 8 numaralı bir çağrı zinciri derinliğinde, hata-dönüş-değer kontrol versiyonu, dönüş değerlerini kontrol etmeyen temel versiyondan yaklaşık% 27 daha yavaştı.
Buna karşılık istisna performansı, çağrı derinliğinin değil istisna frekansının bir fonksiyonudur. Bununla birlikte, istisna frekansı arttıkça degredasyon çok daha dramatiktir. Sadece% 25 hata frekansında kod 24 TIMES daha yavaş çalışıyordu. % 100 hata frekansında, istisna sürümü neredeyse 100 TIMES daha yavaştır.
Bu bana, istisna uygulamalarımızda belki de yanlış ödünler verdiğini gösteriyor. İstisnalar, pahalı sap yürüyüşlerinden kaçınarak ya da derleyici tarafından desteklenen dönüş değeri kontrolüne dönüştürülerek daha hızlı olabilir. Yapana kadar, kodumuzun hızlı bir şekilde çalışmasını istediğimizde bunlardan kaçınırız.