Belgeler şunu söylüyor:
http://pandas.pydata.org/pandas-docs/dev/basics.html
"Kesintisiz değerler, kesme (değerlere dayalı bölmeler) ve qcut (örnek niceliklerine dayalı kutular) işlevleri kullanılarak ayrılabilir"
Bana çok soyut geliyor ... Aşağıdaki örnekte farklılıkları görebiliyorum ama qcut (örnek nicelik) aslında ne anlama geliyor / ne anlama geliyor? Qcut ve cut ne zaman kullanılır?
Teşekkürler.
factors = np.random.randn(30)
In [11]:
pd.cut(factors, 5)
Out[11]:
[(-0.411, 0.575], (-0.411, 0.575], (-0.411, 0.575], (-0.411, 0.575], (0.575, 1.561], ..., (-0.411, 0.575], (-1.397, -0.411], (0.575, 1.561], (-2.388, -1.397], (-0.411, 0.575]]
Length: 30
Categories (5, object): [(-2.388, -1.397] < (-1.397, -0.411] < (-0.411, 0.575] < (0.575, 1.561] < (1.561, 2.547]]
In [14]:
pd.qcut(factors, 5)
Out[14]:
[(-0.348, 0.0899], (-0.348, 0.0899], (0.0899, 1.19], (0.0899, 1.19], (0.0899, 1.19], ..., (0.0899, 1.19], (-1.137, -0.348], (1.19, 2.547], [-2.383, -1.137], (-0.348, 0.0899]]
Length: 30
Categories (5, object): [[-2.383, -1.137] < (-1.137, -0.348] < (-0.348, 0.0899] < (0.0899, 1.19] < (1.19, 2.547]]`