Reuters örnek veri setiyle oynuyorum ve iyi çalışıyor (modelim eğitilmiş). Bir modeli nasıl kaydedeceğimi okudum, böylece daha sonra tekrar kullanmak için yükleyebilirim. Ancak bu kaydedilmiş modeli yeni bir metni tahmin etmek için nasıl kullanırım? Kullanıyor muyum models.predict()
?
Bu metni özel bir şekilde hazırlamam gerekiyor mu?
İle denedim
import keras.preprocessing.text
text = np.array(['this is just some random, stupid text'])
print(text.shape)
tk = keras.preprocessing.text.Tokenizer(
nb_words=2000,
filters=keras.preprocessing.text.base_filter(),
lower=True,
split=" ")
tk.fit_on_texts(text)
pred = tk.texts_to_sequences(text)
print(pred)
model.predict(pred)
Ama her zaman anlıyorum
(1L,)
[[2, 4, 1, 6, 5, 7, 3]]
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-83-42d744d811fb> in <module>()
7 print(pred)
8
----> 9 model.predict(pred)
C:\Users\bkey\Anaconda2\lib\site-packages\keras\models.pyc in predict(self, x, batch_size, verbose)
457 if self.model is None:
458 self.build()
--> 459 return self.model.predict(x, batch_size=batch_size, verbose=verbose)
460
461 def predict_on_batch(self, x):
C:\Users\bkey\Anaconda2\lib\site-packages\keras\engine\training.pyc in predict(self, x, batch_size, verbose)
1132 x = standardize_input_data(x, self.input_names,
1133 self.internal_input_shapes,
-> 1134 check_batch_dim=False)
1135 if self.stateful:
1136 if x[0].shape[0] > batch_size and x[0].shape[0] % batch_size != 0:
C:\Users\bkey\Anaconda2\lib\site-packages\keras\engine\training.pyc in standardize_input_data(data, names, shapes, check_batch_dim, exception_prefix)
79 for i in range(len(names)):
80 array = arrays[i]
---> 81 if len(array.shape) == 1:
82 array = np.expand_dims(array, 1)
83 arrays[i] = array
AttributeError: 'list' object has no attribute 'shape'
Eğitimli bir modelle nasıl tahmin yapılacağına dair herhangi bir öneriniz var mı?