Yanıtlar:
Tanım
İki-kubit bir devlet olan sarmalanmış bir devlet ancak ve orada yalnızca değil iki tek qubit durumlarını var | Bir ⟩ = alfa | 0 ⟩ + p | 1 ⟩ ∈ C 2 ve | b ⟩ = y | 0 ⟩ + Â | 1 ⟩ ∈ Cı 2 bu şekilde | Bir ⟩ ⊗ | b ⟩ = | ψ , Burada ⊗ belirtmektedirtensör ürünve a , p , y , A, ∈ Cı .
Yani, Bell devlet göstermek için , basitçe hiçbir iki tek qubit durumlarını orada var olduğunu göstermek için bir dolaşmış devlet var olduğu| Bir⟩ve| b⟩öyle ki| Φ+⟩=| Bir⟩⊗| b⟩.
Kanıt
Farz et ki
Artık dağıtım özelliğini yalnızca
This must be equal to , that is, we must find coefficients , , and , such that
Observe that, in the expression , we want to keep both and . Hence, and , which are the coefficients of , cannot be zero; in other words, we must have and . Similarly, and , which are the complex numbers multiplying cannot be zero, i.e. and . So, all complex numbers , , and must be different from zero.
But, to obtain the Bell state , we want to get rid of and . So, one of the numbers (or both) multiplying (and ) in the expression , i.e. and (and, respectively, and ), must be equal to zero. But we have just seen that , , and must all be different from zero. So, we cannot find a combination of complex numbers , , and such that
In other words, we are not able to express as a tensor product of two one-qubit states. Therefore, is a entangled state.
We can perform a similar proof for other Bell states or, in general, if we want to prove that a state is entangled.
and , as in this answer. This is inelegant, and hard work in the general case. A more straightforward way to prove whether this pure state is entangled is the calculate the reduced density matrix for one of the qudits, i.e. by tracing out the other. The state is separable if and only if has rank 1. Otherwise it is entangled. Mathematically, you can test the rank condition simply by evaluating . Orijinal durum ancak bu değer 1 ise ayrılabilir. Aksi takdirde durum birbirine dolanır.
Meanwhile, if we take , then
If you wish to know about detecting entanglement in mixed states (not pure states), this is less straightforward, but for two qubits there is a necessary and sufficient condition for separability: positivity under the partial transpose operation.