Kutuplardan (1) / sıfırlardan (0) frekans cevabına tam eşlemeyi söylemeyeceğim, ancak frekans ve sıfır / sonsuz yanıt arasındaki bağlantıyı açıklayabileceğimi düşünüyorum, neden sonsuz / sıfır yanıtınız var? w = z sıfır / kutup , yani e - j w'nin z ile ne ilgisi var .e−jw=zzero/pole,e−jwz
Lineer sisteminin genel formudur
bu kutu z-içinde Y ( z ) = ( b 0 + b 1 z + 2 olarak çözülmelidir
yn+a1yn−1+a2yn−2+⋯=b0xn+b1xn−1+b2xn−2+⋯,
Y(z)=(b0+b1z+b2z2+⋯)(1+a1z+a2z2+⋯)X(z)=H(z)X(z)=(1−z0z)(1−z1z)⋯(1−p0z)(1−p1z)⋯X(z).
Sonunda, binom ürünleri serisi (1−z0z)⋯11−p0z , ilk çıkışın diğeri için girdi olduğu bir dizi sistem olarak düşünülebilir.
Tek kutuplu ve sıfırın etkisini analiz etmek istiyorum. Let en çok geri kalanı bu onu transfer fonksiyonu göz önüne ilk sıfır, üzerinden bir giriş sinyali, Y, ( z ) = ( 1 - z 0 z ) Χ ( z ) , karşılık için bazı y n = b 0 x n + b 1 x n - 1 . B = alalımH(z)X(z)Y(z)=(1−z0z)X(z),yn=b0xn+b1xn−1.basitlik için b 1 = 1 . Yani y n = x n + x n - 1b0=b1=1yn=xn+xn−1 .
H (z) sisteminin harmonik sinyal üzerindeki etkisini belirlemek istiyoruz. Yani, giriş test sinyali olacaktır
Yanıt y n = x n + x n olacak
xn=ejwn↔z1+ejwz+e2jwz2+⋯=1/(1−ejw)=X(z).
yani
1+ e - j w transfer fonksiyonudur veya
Y(z)= ( 1 + z )yn=xn+xn−1|xn=ejwn=ejwn+ejw(n−1)=ejwn(1+e−jw)
1+e−jw.
Y(z)=(1+z)(1−ejwz)=(1+z)X(z)
temel olarak çıkışın giriş sinyali artı kaydırılan sinyalin toplamı olduğunu söylediğine dikkat edin , çünkü tekli z zaman alanında tek saat gecikmesini ifade eder.1+zz
H(jw)=1+e−jw=e−jw/2(ejw/2+e−jw/2)=e−jw/22cos(w/2)
{w=0w=π⇒⇒H(j0)=1⋅2cos(0)=2H(jπ)=ejπ/22cos(π/2)=0
Ayrıca elde etmek de iyi bir derstir2cosα=eiα+e−iα çünkü gerçek hayatta karmaşık hayali sinyaller yerine gerçek sinyalleri vereceksiniz.
yn=xn−xn|xn=ejwn=ejwn(1−e−jw)H(jw)=(1−e−jw)=e−jw/2(ejw/2−e−jw/2)=e−jw2sin(w/2)w=0sin(0)=0
H(jw)=1−e−jw=0⇒e−jw=1=e0⇒w=0.
H(z)=1±zH(jw)=1±e−jwe−jw
yn=xn±xn−1=0±1±z=0ejwnejw(n−1)ejwejwn(1±e−jw)=01±e−jw1±z=0
yn=b0xn+b1xn−1
Y(z)=(b0+b1z)X(z)=(b0+b1z)(1+x1z+x2z2+⋯)=b0+(b0x1+b1x0)z+(b0x2+b1x1)z2+⋯.
b0+b1z=0z=−b0/b1,yn(xn=ejwn)=b0ejwn+b1ejw(n−1)=ejwn(b0+b1e−jw)=ejwnb0(1−z0e−jw),
1−z0e−jw=0e−jw=1/z0zz=e−jw. The only thing that bothers me is that fixed-amplitude complex exponential is not enough for the frequency (harmonic) basis. You cannot obtain arbitrary ratio 1/z0=e−jw by choosing appropriate frequency w, a decaying harmonic signal is needed for that. That is weird because I have heard that any signal can be represented as sum of (constant amplitude) sines and cosines. But, anyway, we see that system zero stands for relationship between adjacent samples of input signal. When they are right, the output is identically 0 and we can choose such such frequency w so that zero z=1/z0=e−jw.
Now, what about the poles? Let's single out a single pole a. The system has a from of yn=ayn−1+(xn+xn−1+⋯), under assumption y0=0, has z-transform of Y(z)=X(z)/(1−az).
The feedback a is equivalent to infinite impulse response 1,a,a2,…↔z1+az+a2z2+⋯=1/(1−az). It says that response is infinite when z=1/a. What does it mean if we apply the test signal
xn=ejwn↔zX(z)=1+ejwz+e2jwz2+⋯=1/(1−ejwz)
to our system? We'll get
Y(z)=11−az11−ejwz, or
yn=ejwn+aejw(n−1)+a2ejw(n−2)+⋯=ejwn(1+ae−jw+a2e−2jw+⋯)=ejwn1−ae−jw.
That is, frequency response is
1/(1−ae−jw), which goes to infinity when
e−jw=1/a, the same as
zpole above,
e−jw=zpole=1/a. But again, you can not always arrive at the pole
1/a adjusting the frequency
w alone. The frequency basis functions must be decaying amplitude in general and look like
(kejw)n.
That is, zeroes or poles of the transfer function H(z) happen to match the zeroes and poles of frequency response H(jw), which is really amazing. I noticed that this is related to the relation between adjacent samples, ejwn/ejw(n−1)=ejw=1/zzero in case of zeroes. The fact that ejwn scales exponentially over time, along with the system with feedback a, also seems to be the key for matching between ejw and zpoles. It also seems important that you cannot simply look for the appropriate frequency of ejwn, the basis function must also have adjustable amplitude factor kn.
I would be happy if anybody could explain the same more condensely or more crisply.