Çözüme https://github.com/keras-team/keras/issues/2115 adresinden ekleyin . Yanlış pozitifler ve yanlış negatifler için farklı maliyetler istediğiniz yerde sınıflandırmadan daha fazlasına ihtiyacınız varsa. Şimdi yeni keras versiyonuyla ilgili kayıp fonksiyonunu aşağıda verilen şekilde geçersiz kılabilirsiniz. Bunun weights
bir kare matris olduğunu unutmayın .
from tensorflow.python import keras
from itertools import product
import numpy as np
from tensorflow.python.keras.utils import losses_utils
class WeightedCategoricalCrossentropy(keras.losses.CategoricalCrossentropy):
def __init__(
self,
weights,
from_logits=False,
label_smoothing=0,
reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
name='categorical_crossentropy',
):
super().__init__(
from_logits, label_smoothing, reduction, name=f"weighted_{name}"
)
self.weights = weights
def call(self, y_true, y_pred):
weights = self.weights
nb_cl = len(weights)
final_mask = keras.backend.zeros_like(y_pred[:, 0])
y_pred_max = keras.backend.max(y_pred, axis=1)
y_pred_max = keras.backend.reshape(
y_pred_max, (keras.backend.shape(y_pred)[0], 1))
y_pred_max_mat = keras.backend.cast(
keras.backend.equal(y_pred, y_pred_max), keras.backend.floatx())
for c_p, c_t in product(range(nb_cl), range(nb_cl)):
final_mask += (
weights[c_t, c_p] * y_pred_max_mat[:, c_p] * y_true[:, c_t])
return super().call(y_true, y_pred) * final_mask