Donanım örneklemesi yapmaya çalışıyorum ama bazı garip performans sorunlarına çarpıyorum. Ortalama kare hızı yaklaşık 45'tir, ancak son derece dalgalı.
- Pencereli
- SynchronizeWithVerticalRetrace = yanlış
- IsFixedTimeStep = yanlış
- PresentationInterval = PresentInterval.Immediate
Aşağıdaki resim ölçülen zamanlamamı (ile Stopwatch
) göstermektedir. En üstteki grafik, Draw
yöntemde harcanan süredir ve en alttaki grafik, sonundan Draw
başlangıcına kadar geçen süredir.Update
Sivri uçlar neredeyse tam olarak 1 saniye aralıklıdır ve her zaman normal zamanın 2,3,4 veya 5 katıdır. Başaktan hemen sonra gelen çerçeveler hiç zaman almaz. Çöp toplayıcı olmadığını kontrol ettim.
Şu anda 1 üçgen örnekle 12 üçgen ve 36 köşeden oluşan bir kafes oluşturuyorum (bunun optimal olmadığını biliyorum, ama sadece test etmek için). Örnekleme çağrılarını 250 örneklik küçük parçalara topluyorsam, her sorun hafifletilir, ancak cpu kullanımı önemli ölçüde artar. Yukarıdaki çalışma, çekiliş başına 10000 cpu'dadır, bu da cpu'da çok daha kolaydır.
Oyunu tam ekran olarak çalıştırırsam, alt grafik neredeyse yok, ancak aynı sorun şimdi Draw
yöntemde ortaya çıkıyor.
İşte PIX'in içinde , benim için hiç mantıklı olmayan bir koşu . Görünüşe göre bazı kareler için render yok ...
Herhangi bir fikir, buna ne sebep olabilir?
EDIT : İstendiği gibi, render kodunun ilgili bölümleri
A CubeBuffer
oluşturulur ve başlatılır, daha sonra küplerle doldurulur. Küp miktarı belirli bir sınırın üzerindeyse, yeni CubeBuffer
bir tane oluşturulur, vb. Her arabellek tüm örnekleri tek bir çağrıda çizer.
Sadece bir kez ihtiyaç duyulan bilgiler static
(tepe noktası, dizin arabellek ve tepe noktası bildirimi; şimdiye kadar hiçbir fark yaratmasa da). Doku 512x512
Çizmek()
device.Clear(Color.DarkSlateGray);
device.RasterizerState = new RasterizerState() { };
device.BlendState = new BlendState { };
device.DepthStencilState = new DepthStencilState() { DepthBufferEnable = true };
//samplerState=new SamplerState() { AddressU = TextureAddressMode.Mirror, AddressV = TextureAddressMode.Mirror, Filter = TextureFilter.Linear };
device.SamplerStates[0] = samplerState
effect.CurrentTechnique = effect.Techniques["InstancingTexColorLight"];
effect.Parameters["xView"].SetValue(cam.viewMatrix);
effect.Parameters["xProjection"].SetValue(projectionMatrix);
effect.Parameters["xWorld"].SetValue(worldMatrix);
effect.Parameters["cubeTexture"].SetValue(texAtlas);
foreach (EffectPass pass in effect.CurrentTechnique.Passes)
pass.Apply();
foreach (var buf in CubeBuffers)
buf.Draw();
base.Draw(gameTime);
CubeBuffer
[StructLayout(LayoutKind.Sequential)]
struct InstanceInfoOpt9
{
public Matrix World;
public Vector2 Texture;
public Vector4 Light;
};
static VertexBuffer geometryBuffer = null;
static IndexBuffer geometryIndexBuffer = null;
static VertexDeclaration instanceVertexDeclaration = null;
VertexBuffer instanceBuffer = null;
InstanceInfoOpt9[] Buffer = new InstanceInfoOpt9[MaxCubeCount];
Int32 bufferCount=0
Init()
{
if (geometryBuffer == null)
{
geometryBuffer = new VertexBuffer(Device, typeof (VertexPositionTexture), 36, BufferUsage.WriteOnly);
geometryIndexBuffer = new IndexBuffer(Device, typeof (Int32), 36, BufferUsage.WriteOnly);
vertices = new[]{...}
geometryBuffer.SetData(vertices);
indices = new[]{...}
geometryIndexBuffer.SetData(indices);
var instanceStreamElements = new VertexElement[6];
instanceStreamElements[0] = new VertexElement(sizeof (float)*0, VertexElementFormat.Vector4, VertexElementUsage.TextureCoordinate, 1);
instanceStreamElements[1] = new VertexElement(sizeof (float)*4, VertexElementFormat.Vector4, VertexElementUsage.TextureCoordinate, 2);
instanceStreamElements[2] = new VertexElement(sizeof (float)*8, VertexElementFormat.Vector4, VertexElementUsage.TextureCoordinate, 3);
instanceStreamElements[3] = new VertexElement(sizeof (float)*12, VertexElementFormat.Vector4, VertexElementUsage.TextureCoordinate, 4);
instanceStreamElements[4] = new VertexElement(sizeof (float)*16, VertexElementFormat.Vector2, VertexElementUsage.TextureCoordinate, 5);
instanceStreamElements[5] = new VertexElement(sizeof (float)*18, VertexElementFormat.Vector4, VertexElementUsage.TextureCoordinate, 6);
instanceVertexDeclaration = new VertexDeclaration(instanceStreamElements);
}
instanceBuffer = new VertexBuffer(Device, instanceVertexDeclaration, MaxCubeCount, BufferUsage.WriteOnly);
instanceBuffer.SetData(Buffer);
bindings = new[]
{
new VertexBufferBinding(geometryBuffer),
new VertexBufferBinding(instanceBuffer, 0, 1),
};
}
AddRandomCube(Vector3 pos)
{
if(cubes.Count >= MaxCubeCount)
return null;
Vector2 tex = new Vector2(rnd.Next(0, 16), rnd.Next(0, 16))
Vector4 l= new Vector4((float)rnd.Next(), (float)rnd.Next(), (float)rnd.Next(), (float)rnd.Next());
var cube = new InstanceInfoOpt9(Matrix.CreateTranslation(pos),tex, l);
Buffer[bufferCount++] = cube;
return cube;
}
Draw()
{
Device.Indices = geometryIndexBuffer;
Device.SetVertexBuffers(bindings);
Device.DrawInstancedPrimitives(PrimitiveType.TriangleList, 0, 0, 36, 0, 12, bufferCount);
}
Shader
float4x4 xView;
float4x4 xProjection;
float4x4 xWorld;
texture cubeTexture;
sampler TexColorLightSampler = sampler_state
{
texture = <cubeTexture>;
mipfilter = LINEAR;
minfilter = LINEAR;
magfilter = LINEAR;
};
struct InstancingVSTexColorLightInput
{
float4 Position : POSITION0;
float2 TexCoord : TEXCOORD0;
};
struct InstancingVSTexColorLightOutput
{
float4 Position : POSITION0;
float2 TexCoord : TEXCOORD0;
float4 Light : TEXCOORD1;
};
InstancingVSTexColorLightOutput InstancingVSTexColorLight(InstancingVSTexColorLightInput input, float4x4 instanceTransform : TEXCOORD1, float2 instanceTex : TEXCOORD5, float4 instanceLight : TEXCOORD6)
{
float4x4 preViewProjection = mul (xView, xProjection);
float4x4 preWorldViewProjection = mul (xWorld, preViewProjection);
InstancingVSTexColorLightOutput output;
float4 pos = input.Position;
pos = mul(pos, transpose(instanceTransform));
pos = mul(pos, preWorldViewProjection);
output.Position = pos;
output.Light = instanceLight;
output.TexCoord = float2((input.TexCoord.x / 16.0f) + (1.0f / 16.0f * instanceTex.x),
(input.TexCoord.y / 16.0f) + (1.0f / 16.0f * instanceTex.y));
return output;
}
float4 InstancingPSTexColorLight(InstancingVSTexColorLightOutput input) : COLOR0
{
float4 color = tex2D(TexColorLightSampler, input.TexCoord);
color.r = color.r * input.Light.r;
color.g = color.g * input.Light.g;
color.b = color.b * input.Light.b;
color.a = color.a * input.Light.a;
return color;
}
technique InstancingTexColorLight
{
pass Pass0
{
VertexShader = compile vs_3_0 InstancingVSTexColorLight();
PixelShader = compile ps_3_0 InstancingPSTexColorLight();
}
}