Ray dökümlü 2 boyutlu bir ızgarada görüş hattını uygulamanın daha verimli bir yolu var mı?


9

Bir 2d fayans ızgarası ve görüş hattını temsil eden yaklaşık bir koordinat küresi - oynatıcıda ortalanmış - düşünün. Amaç, engelleri aşan görüş hattını (duvarlar) engellemek.

Görme alanındaki tek bir hücrenin görünür olup olmadığını belirlemek nispeten kolaydır: Bresenham'ı kullanarak oynatıcıdan hedef hücreye bir ışın verin - oyuncu ile hedef arasındaki üst üste binen hücrelerden biri bir engelse, hedef hücre görünür değil.

Şimdi, ilk düşüncem görüş çizgisindeki tüm ızgara hücreleri arasında yinelemekti - ama bu benim için verimsiz görünüyor. Örneğin, oynatıcı bir duvarın yanında duruyorsa ve duvarın ötesindeki hücrenin görünmediğini belirlerseniz, ışındaki tüm hücreleri görünmeyecek şekilde belirleyebilirsiniz.

Ayrıca görüş alanının çevresi boyunca her hücreye bir ışın dökmeyi ve her ışın boyunca her bir hücreyi yinelemeyi düşündüm - ama sonra bazı hücreleri bir kereden fazla işliyorum.

Bunu yapmanın daha etkili bir yolu var mı?

Tur başına ~ 50 hücre yinelemek nispeten hafif bir hesaplama olsa da, hız için gidiyorum - hedef otomatik oynatmada saniyede birkaç tur dönebilmektir. Yani bunu ne kadar verimli yapabilirim, o kadar iyi.


"En iyi" sorular genellikle işe yaramaz. En iyi yol hedeflerinize ve desteklemeniz gereken diğer özelliklere çok özel olduğundan. Sadece kodu profillemenizi ve şimdi ihtiyaçlarınız için yeterli olup olmadığını görmenizi öneririm. Profil oluşturma ayrıca daha iyi performans için kodunuzun ilk önce geliştirmeniz gereken kısımlarını da gösterir.
MichaelHouse

Oynatıcı çevresinde kaç hücre olmasını bekliyorsunuz?
Luis Estrada

@Luis muhtemelen 7 veya 8 hücrelik bir yarıçapa sahiptir.
CodeMoose

2
Sen Hatırlayacaksınız gamedev.stackexchange.com/a/47560/4129 Bir O (n) Süpürme içinde yapabilirsiniz.
Will

2
Optimize etmeniz gerektiğinden emin misiniz? Aslında ele alınması gereken bir darboğazla karşılaştınız mı? Yoksa bunun gelecekte bir sorun olacağını tahmin ediyor musunuz? Kodunuz nispeten modüler ise, bir çözüm geliştirmek ve daha sonra geri dönmek için optimizasyon gerekiyorsa dünyanın en kolay yolu olmalıdır.
Djentleman

Yanıtlar:


8

Daha büyük alanları aynı anda kapsayacak şekilde "gölge yayları" yayınlamayı deneyebilirsiniz. Gerçek ayrıntılar biraz dahil olsa da, Eric Lippert'in http://blogs.msdn.com/b/ericlippert/archive/2011/12/12/shadowcasting-in adresinde çok ayrıntılı bir açıklaması var (canlı Silverlight demosu ile). -c-part-one.aspx .


blog bağlantısı öldü. Bu cevapta güncelleme var mı?
Neon Warge

Bu nedenle, genellikle yanıtların, tamamen dış bağlantılara dayanmak yerine, önerdikleri tekniklerin en azından kaba bir özetini içermesini öneririz. Bu durumda, @NeonWarge, Stoiko'nun bu tekniği daha sonraki bir cevapta uygulaması faydalı bir kılavuz mudur?
DMGregory

5

Jimmy'nin önerdiği algoritmayı uyguladım.

Burada işleyen kodun videosu: https://youtu.be/lIlPfwlcbHo

Izgara Görüş Alanı

/*
   What this code does:
      Rasterizes a single Field Of View octant on a grid, similar to the way 
      FOV / shadowcasting is implemented in some roguelikes.
      Clips to bitmap
      Steps on pixel centers
      Optional attenuation
      Optional circle clip
      Optional lit blocking tiles

   To rasterize the entire FOV, call this in a loop with octant in range 0-7
   Inspired by http://blogs.msdn.com/b/ericlippert/archive/2011/12/12/shadowcasting-in-c-part-one.aspx
*/

static inline int Mini( int a, int b ) {
    return a < b ? a : b;
}

static inline int Maxi( int a, int b ) {
    return a > b ? a : b;
}

static inline int Clampi( int v, int min, int max ) {
    return Maxi( min, Mini( v, max ) );
}

typedef union c2_s {
    struct {
        int x, y;
    };
    int a[2];
} c2_t;

static const c2_t c2zero = { .a = { 0, 0 } };
static const c2_t c2one = { .a = { 1, 1 } };

static inline c2_t c2xy( int x, int y ) {
    c2_t c = { { x, y } };
    return c;
}

static inline c2_t c2Neg( c2_t c ) {
    return c2xy( -c.x, -c.y );
}

static inline c2_t c2Add( c2_t a, c2_t b ) {
    return c2xy( a.x + b.x, a.y + b.y );
}

static inline c2_t c2Sub( c2_t a, c2_t b ) {
    return c2xy( a.x - b.x, a.y - b.y );
}

static inline int c2Dot( c2_t a, c2_t b ) {
    return a.x * b.x + a.y * b.y;
}

static inline int c2CrossC( c2_t a, c2_t b ) {
    return a.x * b.y - a.y * b.x;
}

static inline c2_t c2Clamp( c2_t c, c2_t min, c2_t max ) {
    return c2xy( Clampi( c.x, min.x, max.x ), Clampi( c.y, min.y, max.y ) );
}

static inline c2_t c2Scale( c2_t a, int s ) {
    return c2xy( a.x * s, a.y * s );
}

void RasterizeFOVOctant( int originX, int originY,
                         int radius, 
                         int bitmapWidth, int bitmapHeight,
                         int octant,
                         int skipAttenuation,
                         int skipClampToRadius,
                         int darkWalls,
                         const unsigned char *inBitmap, 
                         unsigned char *outBitmap ) {
#define READ_PIXEL(c) inBitmap[(c).x+(c).y*bitmapWidth]
#define WRITE_PIXEL(c,color) outBitmap[(c).x+(c).y*bitmapWidth]=(color)
#define MAX_RAYS 64
#define ADD_RAY(c) {nextRays->rays[Mini(nextRays->numRays,MAX_RAYS-1)] = (c);nextRays->numRays++;}
#define IS_ON_MAP(c) ((c).x >= 0 && (c).x < bitmapWidth && (c).y >= 0 && (c).y < bitmapHeight)
    typedef struct {
        int numRays;
        c2_t rays[MAX_RAYS];
    } raysList_t;
    // keep these coupled like this
    static const const c2_t bases[] = {
        { { 1, 0  } }, { { 0, 1  } },
        { { 1, 0  } }, { { 0, -1 } },
        { { -1, 0 } }, { { 0, -1 } },
        { { -1, 0 } }, { { 0, 1  } },
        { { 0, 1  } }, { { -1, 0 } },
        { { 0, 1  } }, { { 1, 0  } },
        { { 0, -1 } }, { { 1, 0  } },
        { { 0, -1 } }, { { -1, 0 } },
    }; 
    c2_t e0 = bases[( octant * 2 + 0 ) & 15];
    c2_t e1 = bases[( octant * 2 + 1 ) & 15];
    raysList_t rayLists[2] = { {
        .numRays = 2,
        .rays = {
            c2xy( 1, 0 ),
            c2xy( 1, 1 ),
        }, 
    } };
    c2_t bitmapSize = c2xy( bitmapWidth, bitmapHeight );
    c2_t bitmapMax = c2Sub( bitmapSize, c2one );
    c2_t origin = c2Clamp( c2xy( originX, originY ), c2zero, bitmapMax );
    if ( READ_PIXEL( origin ) ) {
        WRITE_PIXEL( origin, 255 );
        return;
    }
    c2_t dmin = c2Neg( origin );
    c2_t dmax = c2Sub( bitmapMax, origin );
    int dmin0 = c2Dot( dmin, e0 );
    int dmax0 = c2Dot( dmax, e0 );
    int limit0 = Mini( radius, dmin0 > 0 ? dmin0 : dmax0 );
    int dmin1 = c2Dot( dmin, e1 );
    int dmax1 = c2Dot( dmax, e1 );
    int limit1 = Mini( radius, dmin1 > 0 ? dmin1 : dmax1 );
    c2_t ci = origin;
    for ( int i = 0; i <= limit0; i++ ) {
        int i2 = i * 2;
        raysList_t *currRays = &rayLists[( i + 0 ) & 1];
        raysList_t *nextRays = &rayLists[( i + 1 ) & 1];
        nextRays->numRays = 0;
        for ( int r = 0; r < currRays->numRays - 1; r += 2 ) {
            c2_t r0 = currRays->rays[r + 0];
            c2_t r1 = currRays->rays[r + 1];
            int inyr0 = ( i2 - 1 ) * r0.y / r0.x;
            int outyr0 = ( i2 + 1 ) * r0.y / r0.x;
            int inyr1 = ( i2 - 1 ) * r1.y / r1.x;
            int outyr1 = ( i2 + 1 ) * r1.y / r1.x;

            // every pixel with a center INSIDE the frustum is lit

            int starty = outyr0 + 1;
            if ( c2CrossC( r0, c2xy( i2, outyr0 ) ) < 0 ) {
                starty++;
            }
            starty /= 2;
            c2_t start = c2Add( ci, c2Scale( e1, starty ) );
            int endy = inyr1 + 1;
            if ( c2CrossC( r1, c2xy( i2, inyr1 + 1 ) ) > 0 ) {
                endy--;
            }
            endy /= 2;
            //c2_t end = c2Add( ci, c2Scale( e1, endy ) );
            {
                int y;
                c2_t p;
                int miny = starty;
                int maxy = Mini( endy, limit1 ); 
                for ( y = miny, p = start; y <= maxy; y++, p = c2Add( p, e1 ) ) {
                    WRITE_PIXEL( p, 255 );
                }
            }

            // push rays for the next column

            // correct the bounds first

            c2_t bounds0;
            c2_t bounds1;
            c2_t firstin = c2Add( ci, c2Scale( e1, ( inyr0 + 1 ) / 2 ) );
            c2_t firstout = c2Add( ci, c2Scale( e1, ( outyr0 + 1 ) / 2 ) );
            if ( ( IS_ON_MAP( firstin ) && ! READ_PIXEL( firstin ) )
                && ( IS_ON_MAP( firstout ) && ! READ_PIXEL( firstout ) ) ) {
                  bounds0 = r0;
            } else {
                int top = ( outyr0 + 1 ) / 2;
                int bottom = Mini( ( inyr1 + 1 ) / 2, limit1 );
                int y;
                c2_t p = c2Add( ci, c2Scale( e1, top ) );
                for ( y = top * 2; y <= bottom * 2; y += 2, p = c2Add( p, e1 ) ) {
                    if ( ! READ_PIXEL( p ) ) {
                        break;
                    }
                    // pixels that force ray corrections are lit too
                    WRITE_PIXEL( p, 255 );
                }
                bounds0 = c2xy( i2 - 1, y - 1 );
                inyr0 = ( i2 - 1 ) * bounds0.y / bounds0.x;
                outyr0 = ( i2 + 1 ) * bounds0.y / bounds0.x;
            }
            c2_t lastin = c2Add( ci, c2Scale( e1, ( inyr1 + 1 ) / 2 ) );
            c2_t lastout = c2Add( ci, c2Scale( e1, ( outyr1 + 1 ) / 2 ) );
            if ( ( IS_ON_MAP( lastin ) && ! READ_PIXEL( lastin ) )
                && ( IS_ON_MAP( lastout ) && ! READ_PIXEL( lastout ) ) ) {
                bounds1 = r1;
            } else {
                int top = ( outyr0 + 1 ) / 2;
                int bottom = Mini( ( inyr1 + 1 ) / 2, limit1 );
                int y;
                c2_t p = c2Add( ci, c2Scale( e1, bottom ) );
                for ( y = bottom * 2; y >= top * 2; y -= 2, p = c2Sub( p, e1 ) ) {
                    if ( ! READ_PIXEL( p ) ) {
                        break;
                    }
                    // pixels that force ray corrections are lit too
                    WRITE_PIXEL( p, 255 );
                }
                bounds1 = c2xy( i2 + 1, y + 1 );
                inyr1 = ( i2 - 1 ) * bounds1.y / bounds1.x;
                outyr1 = ( i2 + 1 ) * bounds1.y / bounds1.x;
            }

            // closed frustum - quit
            if ( c2CrossC( bounds0, bounds1 ) <= 0 ) {
                continue;
            }

            // push actual rays
            {
                ADD_RAY( bounds0 );
                int top = ( outyr0 + 1 ) / 2;
                int bottom = Mini( ( inyr1 + 1 ) / 2, limit1 );
                c2_t p = c2Add( ci, c2Scale( e1, top ) );
                int prevPixel = READ_PIXEL( p );
                for ( int y = top * 2; y <= bottom * 2; y += 2, p = c2Add( p, e1 ) ) {
                    int pixel = READ_PIXEL( p );
                    if ( prevPixel != pixel ) {
                        c2_t ray;
                        if ( pixel ) {
                            ray = c2xy( i2 + 1, y - 1 );
                        } else {
                            ray = c2xy( i2 - 1, y - 1 );
                        }
                        ADD_RAY( ray );
                    }
                    prevPixel = pixel;
                }
                ADD_RAY( bounds1 );
            }
        }
        ci = c2Add( ci, e0 );
    }

    if ( ! skipAttenuation ) {
        c2_t ci = origin;
        int rsq = radius * radius;
        for ( int i = 0; i <= limit0; i++ ) {
            c2_t p = ci;
            for ( int j = 0; j <= limit1; j++ ) {
                c2_t d = c2Sub( p, origin );
                int dsq = c2Dot( d, d );
                int mod = 255 - Mini( dsq * 255 / rsq, 255 );
                int lit = !! outBitmap[p.x + p.y * bitmapWidth];
                WRITE_PIXEL( p, mod * lit );
                p = c2Add( p, e1 );
            }
            ci = c2Add( ci, e0 );
        }
    } else if ( ! skipClampToRadius ) {
        c2_t ci = origin;
        int rsq = radius * radius;
        for ( int i = 0; i <= limit0; i++ ) {
            c2_t p = ci;
            for ( int j = 0; j <= limit1; j++ ) {
                c2_t d = c2Sub( p, origin );
                if ( c2Dot( d, d ) > rsq ) { 
                    WRITE_PIXEL( p, 0 );
                }
                p = c2Add( p, e1 );
            }
            ci = c2Add( ci, e0 );
        }
    }

    if ( darkWalls ) {
        c2_t ci = origin;
        for ( int i = 0; i <= limit0; i++ ) {
            c2_t p = ci;
            for ( int j = 0; j <= limit1; j++ ) {
                if ( READ_PIXEL( p ) ) { 
                    WRITE_PIXEL( p, 0 );
                }
                p = c2Add( p, e1 );
            }
            ci = c2Add( ci, e0 );
        }
    } 
}
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.