Yanıtlar:
LTI sistemlerinin kesin özelliklerinden biri , girdilerinde henüz mevcut olmayan yeni frekanslar üretememesidir. Lütfen bu bağlamda bir frekansın tipteki sinyalleri ifade ettiğini unutmayın. veya arasında olan sonsuz süresi ve aynı zamanda şu şekilde de ifade edilir Özfonksiyonlar (özellikle yalnızca kompleks üstel için) LTI sistemleri olan ve BT Fourier dönüşümleri ile ifade edilir dürtü olarak frekans alanında işlevleri veya repectively.
Bunun neden böyle olduğunu görmenin bir yolu, CTFT'yi gözlemlemek, , çıktı iyi bilinen ilişkinin verdiği Sistem aynı zamanda LTI (ve sadece zaman istikrarlı böylece Nitekim olarak ) Bulunmaktadır.
(yani
Basit bir grafik çizim ile yönlendirilen küçük bir düşünceden ve yukarıdaki çarpma özelliğini kullanarak, destek frekans bölgesinin (hangi frekanslar için sıfırdan farklıdır) destek bölgelerinin kesişimi ile verilir ve girişlerin ve frekans yanıtı LTI sisteminin:
Ve set cebirinden biliyoruz ki sonra ve . Yani, bir kavşak her zaman kesişen şeye eşit veya daha azdır. Bu nedenle, destek bölgesi desteğinden daha az veya en fazla . Dolayısıyla çıkışta yeni frekans gözlenmez.
Bu özellik bir LTI sistemi olmak için gerekli bir koşul olduğundan, ona sahip olmayan herhangi bir sistem LTI olamaz.
Sağladığınız önermeyle, basit bir cebirsel argüman yapabilirsiniz. Eğer:
nerede giriş sinyalinin spektrumudur ve ) sistemin frekans cevabıdır, o zaman bazı varsa giriş sinyalinde , sonra ayrıca; faktör yok sıfırdan farklı bir değer elde etmek için ile çarpabilirsiniz.
Bununla birlikte, LTI sistemleri için yukarıda başladığım öncülün gerçeğini belirlemek biraz iş gerektiriyor. Ancak, bunun doğru olduğunu varsayarsak, bir LTI sisteminin çıktısına herhangi bir yeni frekans bileşeni ekleyememesi doğrudan bunu izler.
Neden bir LTI sisteminin yeni frekans üretemediğini ima eder?
Belirli bir frekans girdimizde mevcut değil, . Çünkü 0 çarpımsal kimliğe itaat eder, . Böylece frekans çıkış sinyalinde yok.
Neden bir sistem yeni frekanslar üretirse, o zaman LTI değildir?
Diyelim ki girdimiz . Daha sonra sistemimizin yeni frekanslar üretebileceğini varsayarsak, çıktıyı elde etmek mümkündür.. Çünkü sabitleri bulamıyoruz öyle ki , sistemimiz LTI değil.
Bir LTI sistemi saf frekanslarla köşegenleştirilir . Sinüsler / kosinüsler lineer sistemin özvektörleridir. Başka bir deyişle, herhangi bir sıfır olmayan sinüs veya kosinüs (veya kompleks bir cisoid) girişi, aynı frekansta bir sinüs veya kosinüs çıkışına tam olarak sahiptir (ancak çıkış genliği kaybolabilir).
Değişebilecek tek şey, genlikleri veya fazlarıdır. Dolayısıyla, girişte belirli bir frekansa sahip sinüs yoksa, çıkışta bu frekansla hiçbir şey (sıfır) elde edemezsiniz.
İkinci soru kontrasepsiyon veya regülasyon falsi ile cevaplanır: doğru, öyle . Bir sistem LTI ise, yeni frekanslar oluşturmaz. Bir sistem yeni frekanslar üretirse, LTI değildir.