Gibbs Çıktısından Marjinal Olasılık


13

Bölüm 4.2.1'deki sonuçları sıfırdan çoğaltıyorum.

Gibbs Çıktısından Marjinal Olasılık

Siddhartha Chib

Amerikan İstatistik Derneği Dergisi, Vol. 432. (Aralık 1995), sayfa 1313-1321.

Bilinen sayıdaki bileşenli normal modelin bir karışımıdır . k1

f(xw,μ,σ2)=i=1nj=1kN(xiμj,σj2).()

Bu model için Gibbs örnekleyicisi, Tanner ve Wong'un veri büyütme tekniği kullanılarak uygulanır. değerlerini varsayarak ayırma değişkenleri kümesi tanıtılır ve ve f (x_i \ mid z , \ mu, \ sigma ^ 2) = \ mathrm {N} (x_i \ mid \ mu_ {z_i}, \ sigma ^ 2_ {z_i}) . Z_i'nin bütünleşmesi orijinal olasılığı (*) verir .z=(z1,,zn)1,,kPr(zi=jw)=wjf(xiz,μ,σ2)=N(xiμzi,σzi2)zi()

Veri kümesi, Corona Borealis takımyıldızından 82 gökadanın hızı ile oluşturulur .

set.seed(1701)

x <- c(  9.172,  9.350,  9.483,  9.558,  9.775, 10.227, 10.406, 16.084, 16.170, 18.419, 18.552, 18.600, 18.927,
        19.052, 19.070, 19.330, 19.343, 19.349, 19.440, 19.473, 19.529, 19.541, 19.547, 19.663, 19.846, 19.856,
        19.863, 19.914, 19.918, 19.973, 19.989, 20.166, 20.175, 20.179, 20.196, 20.215, 20.221, 20.415, 20.629,
        20.795, 20.821, 20.846, 20.875, 20.986, 21.137, 21.492, 21.701, 21.814, 21.921, 21.960, 22.185, 22.209,
        22.242, 22.249, 22.314, 22.374, 22.495, 22.746, 22.747, 22.888, 22.914, 23.206, 23.241, 23.263, 23.484,
        23.538, 23.542, 23.666, 23.706, 23.711, 24.129, 24.285, 24.289, 24.366, 24.717, 24.990, 25.633, 26.960,
        26.995, 32.065, 32.789, 34.279 )

nn <- length(x)

Biz varsayalım ki , sitesindeki ve sitesindeki bağımsız önsel ile wμjσj2

(w1,,wk)Dir(a1,,ak),μjN(μ0,σ02),σj2IG(ν02,δ02).
k <- 3

mu0 <- 20
va0 <- 100

nu0 <- 6
de0 <- 40

a <- rep(1, k)

Bayes Teoremini kullanarak koşulların tamamı içinde ile

wμ,σ2,z,xDir(a1+n1,,ak+nk)μjw,σ2,z,xN(njmjσ02+μ0σj2njσ02+σj2,σ02σj2njσ02+σj2)σj2w,μ,z,xIG(ν0+nj2,δ0+δj2)Pr(zi=jw,μ,σ2,x)wj×1σje(xiμj)2/2σj2
nj=|Lj|,mj={1njiLjxiifnj>00otherwise.,δj=iLj(xiμj)2,
Lj={i{1,,n}:zi=j} .

Amaç, modelin marjinal olabilirliği için bir tahmin hesaplamaktır. Chib'in metodu, tam şartları kullanarak Gibbs örnekleyicisinin ilk çalışmasıyla başlar.

burn_in <- 1000
run     <- 15000

cat("First Gibbs run (full):\n")

N <- burn_in + run

w  <- matrix(1, nrow = N, ncol = k)
mu <- matrix(0, nrow = N, ncol = k)
va <- matrix(1, nrow = N, ncol = k)
z  <- matrix(1, nrow = N, ncol = nn)

n <- integer(k)
m <- numeric(k)
de <- numeric(k)

rdirichlet <- function(a) { y <- rgamma(length(a), a, 1); y / sum(y) }

pb <- txtProgressBar(min = 2, max = N, style = 3)
z[1,] <- sample.int(k, size = nn, replace = TRUE)
for (t in 2:N) {
    n <- tabulate(z[t-1,], nbins = k)
    w[t,] <- rdirichlet(a + n)
    m <- sapply(1:k, function(j) sum(x[z[t-1,]==j]))
    m[n > 0] <- m[n > 0] / n[n > 0]
    mu[t,] <- rnorm(k, mean = (n*m*va0+mu0*va[t-1,])/(n*va0+va[t-1,]), sd = sqrt(va0*va[t-1,]/(n*va0+va[t-1,])))
    de <- sapply(1:k, function(j) sum((x[z[t-1,]==j] - mu[t,j])^2))
    va[t,] <- 1 / rgamma(k, shape = (nu0+n)/2, rate = (de0+de)/2)
    z[t,] <- sapply(1:nn, function(i) sample.int(k, size = 1, prob = exp(log(w[t,]) + dnorm(x[i], mean = mu[t,], sd = sqrt(va[t,]), log = TRUE))))
    setTxtProgressBar(pb, t)
}
close(pb)

Bu ilk çalıştırmadan itibaren yaklaşık en yüksek olabilirlik noktasına ulaşırız. Olasılık aslında sınırsız olduğundan, bu prosedürün muhtemelen verdiği yaklaşık bir yerel MAP'dir.(w,μ,σ2)

w  <- w[(burn_in+1):N,]
mu <- mu[(burn_in+1):N,]
va <- va[(burn_in+1):N,]
z  <- z[(burn_in+1):N,]
N  <- N - burn_in

log_L <- function(x, w, mu, va) sum(log(sapply(1:nn, function(i) sum(exp(log(w) + dnorm(x[i], mean = mu, sd = sqrt(va), log = TRUE))))))

ts <- which.max(sapply(1:N, function(t) log_L(x, w[t,], mu[t,], va[t,])))

ws <- w[ts,]
mus <- mu[ts,]
vas <- va[ts,]

Chib'in marjinal olasılığa ilişkin günlük tahmini

logf(x)^=logLx(w,μ,σ2)+logπ(w,μ,σ2)logπ(μx)logπ(σ2μ,x)logπ(wμ,σ2,x).

İlk iki terime zaten sahibiz.

log_prior <- function(w, mu, va) {
    lgamma(sum(a)) - sum(lgamma(a)) + sum((a-1)*log(w))
    + sum(dnorm(mu, mean = mu0, sd = sqrt(va0), log = TRUE))
    + sum((nu0/2)*log(de0/2) - lgamma(nu0/2) - (nu0/2+1)*log(va) - de0/(2*va))
}

chib <- log_L(x, ws, mus, vas) + log_prior(ws, mus, vas)

Rao-Blackwellized tahmini olduğu ve kolayca elde edilir ilk Gibbs koşusundan.π(μx)

π(μx)=j=1kN(μj|njmjσ02+μ0σj2njσ02+σj2,σ02σj2njσ02+σj2)p(σ2,zx)dσ2dz,
pi.mu_va.z.x <- function(mu, va, z) {
    n <- tabulate(z, nbins = k)
    m <- sapply(1:k, function(j) sum(x[z==j]))
    m[n > 0] <- m[n > 0] / n[n > 0]
    exp(sum(dnorm(mu, mean = (n*m*va0+mu0*va)/(n*va0+va), sd = sqrt(va0*va/(n*va0+va)), log = TRUE)))
}

chib <- chib - log(mean(sapply(1:N, function(t) pi.mu_va.z.x(mus, va[t,], z[t,]))))

Rao-Blackwellized tahmini , ve 'lerin güncellenmediği ancak yapıldığı ikinci bir azaltılmış Gibbs çalıştırmasından hesaplanır her yineleme adımında eşittir .π(σ2μ,x)

π(σ2μ,x)=j=1kIG(σj2|ν0+nj2,δ0+δj2)p(zμ,x)dz,
μjμj
cat("Second Gibbs run (reduced):\n")

N <- burn_in + run

w  <- matrix(1, nrow = N, ncol = k)
va <- matrix(1, nrow = N, ncol = k)
z  <- matrix(1, nrow = N, ncol = nn) 

pb <- txtProgressBar(min = 2, max = N, style = 3)
z[1,] <- sample.int(k, size = nn, replace = TRUE)
for (t in 2:N) {
    n <- tabulate(z[t-1,], nbins = k)
    w[t,] <- rdirichlet(a + n)
    de <- sapply(1:k, function(j) sum((x[z[t-1,]==j] - mus[j])^2))
    va[t,] <- 1 / rgamma(k, shape = (nu0+n)/2, rate = (de0+de)/2)
    z[t,] <- sapply(1:nn, function(i) sample.int(k, size = 1, prob = exp(log(w[t,]) + dnorm(x[i], mean = mus, sd = sqrt(va[t,]), log = TRUE))))
    setTxtProgressBar(pb, t)
}
close(pb)

w  <- w[(burn_in+1):N,]
va <- va[(burn_in+1):N,]
z  <- z[(burn_in+1):N,]
N  <- N - burn_in

pi.va_mu.z.x <- function(va, mu, z) {
    n <- tabulate(z, nbins = k)         
    de <- sapply(1:k, function(j) sum((x[z==j] - mu[j])^2))
    exp(sum(((nu0+n)/2)*log((de0+de)/2) - lgamma((nu0+n)/2) - ((nu0+n)/2+1)*log(va) - (de0+de)/(2*va)))
}

chib <- chib - log(mean(sapply(1:N, function(t) pi.va_mu.z.x(vas, mus, z[t,]))))

Aynı şekilde, bir Rao-Blackwellized tahmin olduğu ve ve 'lerin güncellenmediği ancak ve Her yineleme adımında sırasıyla .π(wμ,σ2,x)

π(wμ,σ2,x)=Dir(wa1+n1,,ak+nk)p(zμ,σ2,x)dz,
μjσj2μjσj2
cat("Third Gibbs run (reduced):\n")

N <- burn_in + run

w  <- matrix(1, nrow = N, ncol = k)
z  <- matrix(1, nrow = N, ncol = nn) 

pb <- txtProgressBar(min = 2, max = N, style = 3)
z[1,] <- sample.int(k, size = nn, replace = TRUE)
for (t in 2:N) {
    n <- tabulate(z[t-1,], nbins = k)
    w[t,] <- rdirichlet(a + n)
    z[t,] <- sapply(1:nn, function(i) sample.int(k, size = 1, prob = exp(log(w[t,]) + dnorm(x[i], mean = mus, sd = sqrt(vas), log = TRUE))))
    setTxtProgressBar(pb, t)
}
close(pb)

w  <- w[(burn_in+1):N,]
z  <- z[(burn_in+1):N,]
N  <- N - burn_in

pi.w_z.x <- function(w, z) {
    n <- tabulate(z, nbins = k)
    exp(lgamma(sum(a+n)) - sum(lgamma(a+n)) + sum((a+n-1)*log(w)))
}

chib <- chib - log(mean(sapply(1:N, function(t) pi.w_z.x(ws, z[t,]))))

Tüm bunlardan sonra, Chib: tarafından Monte Carlo hatası ile bildirilenden daha büyük bir günlük tahmini elde .217.9199224.138.086

Gibbs örnekleyicilerini bir şekilde berbat edip etmediğimi kontrol etmek için, RJAGS kullanarak her şeyi yeniden uyguladım. Aşağıdaki kod aynı sonuçları verir.

x <- c( 9.172,  9.350,  9.483,  9.558,  9.775, 10.227, 10.406, 16.084, 16.170, 18.419, 18.552, 18.600, 18.927, 19.052, 19.070, 19.330,
       19.343, 19.349, 19.440, 19.473, 19.529, 19.541, 19.547, 19.663, 19.846, 19.856, 19.863, 19.914, 19.918, 19.973, 19.989, 20.166,
       20.175, 20.179, 20.196, 20.215, 20.221, 20.415, 20.629, 20.795, 20.821, 20.846, 20.875, 20.986, 21.137, 21.492, 21.701, 21.814,
       21.921, 21.960, 22.185, 22.209, 22.242, 22.249, 22.314, 22.374, 22.495, 22.746, 22.747, 22.888, 22.914, 23.206, 23.241, 23.263,
       23.484, 23.538, 23.542, 23.666, 23.706, 23.711, 24.129, 24.285, 24.289, 24.366, 24.717, 24.990, 25.633, 26.960, 26.995, 32.065,
       32.789, 34.279 )

library(rjags)

nn <- length(x)

k <- 3

mu0 <- 20
va0 <- 100

nu0 <- 6
de0 <- 40

a <- rep(1, k)

burn_in <- 10^3

N <- 10^4

full <- "
    model {
        for (i in 1:n) {
            x[i] ~ dnorm(mu[z[i]], tau[z[i]])
            z[i] ~ dcat(w[])
        }
        for (i in 1:k) {
            mu[i] ~ dnorm(mu0, 1/va0)
            tau[i] ~ dgamma(nu0/2, de0/2)
            va[i] <- 1/tau[i]
        }
        w ~ ddirich(a)
    }
"
data <- list(x = x, n = nn, k = k, mu0 = mu0, va0 = va0, nu0 = nu0, de0 = de0, a = a)
model <- jags.model(textConnection(full), data = data, n.chains = 1, n.adapt = 100)
update(model, n.iter = burn_in)
samples <- jags.samples(model, c("mu", "va", "w", "z"), n.iter = N)

mu <- matrix(samples$mu, nrow = N, byrow = TRUE)
    va <- matrix(samples$va, nrow = N, byrow = TRUE)
w <- matrix(samples$w, nrow = N, byrow = TRUE)
    z <- matrix(samples$z, nrow = N, byrow = TRUE)

log_L <- function(x, w, mu, va) sum(log(sapply(1:nn, function(i) sum(exp(log(w) + dnorm(x[i], mean = mu, sd = sqrt(va), log = TRUE))))))

ts <- which.max(sapply(1:N, function(t) log_L(x, w[t,], mu[t,], va[t,])))

ws <- w[ts,]
mus <- mu[ts,]
vas <- va[ts,]

log_prior <- function(w, mu, va) {
    lgamma(sum(a)) - sum(lgamma(a)) + sum((a-1)*log(w))
    + sum(dnorm(mu, mean = mu0, sd = sqrt(va0), log = TRUE))
    + sum((nu0/2)*log(de0/2) - lgamma(nu0/2) - (nu0/2+1)*log(va) - de0/(2*va))
}

chib <- log_L(x, ws, mus, vas) + log_prior(ws, mus, vas)

cat("log-likelihood + log-prior =", chib, "\n")

pi.mu_va.z.x <- function(mu, va, z, x) {
    n <- sapply(1:k, function(j) sum(z==j))
    m <- sapply(1:k, function(j) sum(x[z==j]))
    m[n > 0] <- m[n > 0] / n[n > 0]
    exp(sum(dnorm(mu, mean = (n*m*va0+mu0*va)/(n*va0+va), sd = sqrt(va0*va/(n*va0+va)), log = TRUE)))
}

chib <- chib - log(mean(sapply(1:N, function(t) pi.mu_va.z.x(mus, va[t,], z[t,], x))))

cat("log-likelihood + log-prior - log-pi.mu_ =", chib, "\n")

fixed.mu <- "
    model {
        for (i in 1:n) {
            x[i] ~ dnorm(mus[z[i]], tau[z[i]])
            z[i] ~ dcat(w[])
        }
        for (i in 1:k) {
            tau[i] ~ dgamma(nu0/2, de0/2)
            va[i] <- 1/tau[i]
        }
        w ~ ddirich(a)
    }
"
data <- list(x = x, n = nn, k = k, nu0 = nu0, de0 = de0, a = a, mus = mus)
model <- jags.model(textConnection(fixed.mu), data = data, n.chains = 1, n.adapt = 100)
update(model, n.iter = burn_in)
samples <- jags.samples(model, c("va", "w", "z"), n.iter = N)

va <- matrix(samples$va, nrow = N, byrow = TRUE)
    w <- matrix(samples$w, nrow = N, byrow = TRUE)
z <- matrix(samples$z, nrow = N, byrow = TRUE)

pi.va_mu.z.x <- function(va, mu, z, x) {
    n <- sapply(1:k, function(j) sum(z==j))
    de <- sapply(1:k, function(j) sum((x[z==j] - mu[j])^2))
    exp(sum(((nu0+n)/2)*log((de0+de)/2) - lgamma((nu0+n)/2) - ((nu0+n)/2+1)*log(va) - (de0+de)/(2*va)))
}

chib <- chib - log(mean(sapply(1:N, function(t) pi.va_mu.z.x(vas, mus, z[t,], x))))

cat("log-likelihood + log-prior - log-pi.mu_ - log-pi.va_ =", chib, "\n")

fixed.mu.and.va <- "
    model {
        for (i in 1:n) {
            x[i] ~ dnorm(mus[z[i]], 1/vas[z[i]])
            z[i] ~ dcat(w[])
        }
        w ~ ddirich(a)
    }
"
data <- list(x = x, n = nn, a = a, mus = mus, vas = vas)
model <- jags.model(textConnection(fixed.mu.and.va), data = data, n.chains = 1, n.adapt = 100)
update(model, n.iter = burn_in)
samples <- jags.samples(model, c("w", "z"), n.iter = N)

w <- matrix(samples$w, nrow = N, byrow = TRUE)
    z <- matrix(samples$z, nrow = N, byrow = TRUE)

pi.w_z.x <- function(w, z, x) {
    n <- sapply(1:k, function(j) sum(z==j))
    exp(lgamma(sum(a)+nn) - sum(lgamma(a+n)) + sum((a+n-1)*log(w)))
}

chib <- chib - log(mean(sapply(1:N, function(t) pi.w_z.x(ws, z[t,], x))))

cat("log-likelihood + log-prior - log-pi.mu_ - log-pi.va_ - log-pi.w_ =", chib, "\n")

Benim sorum, yukarıdaki açıklamada Chib'in yönteminde herhangi bir yanlış anlama veya uygulamada herhangi bir hata olup olmadığıdır.


1
Simülasyonu 100 kez çalıştırdığınızda sonuçlar . [218.7655;216.8824]
Zen

Yanıtlar:


6

Öncekinde küçük bir programlama hatası var

log_prior <- function(w, mu, va) {
    lgamma(sum(a)) - sum(lgamma(a)) + sum((a-1)*log(w))
    + sum(dnorm(mu, mean = mu0, sd = sqrt(va0), log = TRUE))
    + sum((nu0/2)*log(de0/2) - lgamma(nu0/2) - (nu0/2+1)*log(va) - de0/(2*va))
}

yerine olması gerektiği gibi

log_prior <- function(w, mu, va) {
    lgamma(sum(a)) - sum(lgamma(a)) + sum((a-1)*log(w)) +
      sum(dnorm(mu, mean = mu0, sd = sqrt(va0), log = TRUE)) +
      sum((nu0/2)*log(de0/2) - lgamma(nu0/2) - (nu0/2+1)*log(va) - de0/(2*va))
}

Kodu bu şekilde yeniden çalıştırmak

> chib
[1] -228.194

ki bu durum Chib (1995) 'te üretilen değer değildir ! Bununla birlikte, Neal 's (1999) 'un sorunun yeniden analizinde,

İsimsiz bir JASA hakemine göre, Chib'in makalesinde verilen eşit olmayan varyanslara sahip üç bileşenli modelin marjinal olasılığının günlüğü için -224.138 rakamı, doğru rakamın -228.608 olduğu bir "yazım hatası" dır.

Böylece bu tutarsızlık sorununu çözer.


2
Prof. Christian Robert ve Kate Lee: ne kadar harika olduğunu biliyor musun?
Zen

2
Bu arada, bu kesinlikle "kötü sözdizimi" nin bir örneğidir. Bunu unutmayacağım.
Zen
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.