0 veya 1'in p-değerleri nasıl yorumlanır?


9

Örneğin, erkek ve kız çocuklarının hangi sınıflarda farklılık gösterdiğini bilmek istediğimden cinsiyet ve sınıf arasında bir etkileşim bulan bir ANOVA çalıştırdım, ancak çoğu durumda 0 ve 1 p-değerleri buluyorum (ayarladım). Bu nasıl / neden mümkün? Doğru görünmüyor ...

as.factor(gender)                     1     16    16.2    2.6377  0.104396    
as.factor(grade)                      7  50077  7153.9 1165.4184 < 2.2e-16 ***
as.factor(gender):as.factor(grade)    7    132    18.9    3.0795  0.003056 ** 
Residuals                          7747  47555     6.1                        
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = rating ~ as.factor(gender) * as.factor(grade), data = users_c[users_c$grade %in% 1:8, ])

$`as.factor(gender)`
           diff        lwr        upr     p adj
m-f -0.09135851 -0.2016276 0.01891058 0.1043964

$`as.factor(grade)`
         diff        lwr       upr     p adj
2-1 0.3823566 -0.5454435  1.310157 0.9169296
3-1 1.9796023  1.1649854  2.794219 0.0000000
4-1 3.9558543  3.1534606  4.758248 0.0000000
5-1 5.7843111  4.9829529  6.585669 0.0000000
6-1 7.0752044  6.2708610  7.879548 0.0000000
7-1 8.4868609  7.6776332  9.296089 0.0000000
8-1 9.3867231  8.5626511 10.210795 0.0000000
3-2 1.5972457  1.0395026  2.154989 0.0000000
4-2 3.5734976  3.0337642  4.113231 0.0000000
5-2 5.4019544  4.8637616  5.940147 0.0000000
6-2 6.6928478  6.1502200  7.235476 0.0000000
7-2 8.1045042  7.5546625  8.654346 0.0000000
8-2 9.0043665  8.4329024  9.575831 0.0000000
4-3 1.9762520  1.6694948  2.283009 0.0000000
5-3 3.8047088  3.5006705  4.108747 0.0000000
6-3 5.0956021  4.7837806  5.407424 0.0000000
7-3 6.5072586  6.1830461  6.831471 0.0000000
8-3 7.4071208  7.0474558  7.766786 0.0000000
5-4 1.8284568  1.5588754  2.098038 0.0000000
6-4 3.1193501  2.8410202  3.397680 0.0000000
7-4 4.5310066  4.2388618  4.823151 0.0000000
8-4 5.4308688  5.0998193  5.761918 0.0000000
6-5 1.2908933  1.0155630  1.566224 0.0000000
7-5 2.7025498  2.4132612  2.991838 0.0000000
8-5 3.6024120  3.2738803  3.930944 0.0000000
7-6 1.4116565  1.1141985  1.709114 0.0000000
8-6 2.3115187  1.9757711  2.647266 0.0000000
8-7 0.8998622  0.5525763  1.247148 0.0000000

$`as.factor(gender):as.factor(grade)`
                diff         lwr        upr     p adj
m:1-f:1  0.005917865 -1.77842639  1.7902621 1.0000000
f:2-f:1  0.318074165 -1.28953805  1.9256864 0.9999988
m:2-f:1  0.442924925 -1.11597060  2.0018205 0.9998619
f:3-f:1  1.769000750  0.35262166  3.1853798 0.0020136
m:3-f:1  2.174229216  0.76569156  3.5827669 0.0000147
f:4-f:1  3.738998543  2.34268666  5.1353104 0.0000000
m:4-f:1  4.163719997  2.77146170  5.5559783 0.0000000
f:5-f:1  5.769586591  4.37599400  7.1631792 0.0000000
m:5-f:1  5.816721075  4.42497532  7.2084668 0.0000000
f:6-f:1  7.169439003  5.77317769  8.5657003 0.0000000
m:6-f:1  7.000924045  5.60308216  8.3987659 0.0000000
f:7-f:1  8.330142924  6.92683436  9.7334515 0.0000000
m:7-f:1  8.674488370  7.26930678 10.0796700 0.0000000
f:8-f:1  9.535307293  8.11198164 10.9586329 0.0000000
m:8-f:1  9.251081088  7.82191240 10.6802498 0.0000000
f:2-m:1  0.312156300 -1.12690148  1.7512141 0.9999959
m:2-m:1  0.437007060 -0.94741539  1.8214295 0.9995001
f:3-m:1  1.763082885  0.54136279  2.9848030 0.0000892
m:3-m:1  2.168311350  0.95569081  3.3809319 0.0000001
f:4-m:1  3.733080678  2.53468294  4.9314784 0.0000000
m:4-m:1  4.157802132  2.96412989  5.3514744 0.0000000
f:5-m:1  5.763668726  4.56844048  6.9588970 0.0000000
m:5-m:1  5.810803210  4.61772882  7.0038776 0.0000000
f:6-m:1  7.163521138  5.96518233  8.3618599 0.0000000
m:6-m:1  6.995006180  5.79482611  8.1951862 0.0000000
f:7-m:1  8.324225059  7.11768240  9.5307677 0.0000000
m:7-m:1  8.668570505  7.45984987  9.8772911 0.0000000
f:8-m:1  9.529389428  8.29962271 10.7591561 0.0000000
m:8-m:1  9.245163223  8.00863850 10.4816879 0.0000000
m:2-f:2  0.124850760 -1.02282435  1.2725259 1.0000000
f:3-f:2  1.450926585  0.50586965  2.3959835 0.0000172
m:3-f:2  1.856155050  0.92289131  2.7894188 0.0000000
f:4-f:2  3.420924378  2.50621691  4.3356318 0.0000000
m:4-f:2  3.845645832  2.93713824  4.7541534 0.0000000
f:5-f:2  5.451512425  4.54096139  6.3620635 0.0000000
m:5-f:2  5.498646910  4.59092496  6.4063689 0.0000000
f:6-f:2  6.851364838  5.93673457  7.7659951 0.0000000
m:6-f:2  6.682849880  5.76580854  7.5998912 0.0000000
f:7-f:2  8.012068759  7.08671595  8.9374216 0.0000000
m:7-f:2  8.356414205  7.42822339  9.2846050 0.0000000
f:8-f:2  9.217233128  8.26179669 10.1726696 0.0000000
m:8-f:2  8.933006923  7.96888762  9.8971262 0.0000000
f:3-m:2  1.326075825  0.46649985  2.1856518 0.0000150
m:3-m:2  1.731304290  0.88471145  2.5778971 0.0000000
f:4-m:2  3.296073618  2.46998162  4.1221656 0.0000000
m:4-m:2  3.720795071  2.90157332  4.5400168 0.0000000
f:5-m:2  5.326661665  4.50517434  6.1481490 0.0000000
m:5-m:2  5.373796150  4.55544575  6.1921465 0.0000000
f:6-m:2  6.726514078  5.90050756  7.5525206 0.0000000
m:6-m:2  6.557999120  5.72932364  7.3866746 0.0000000
f:7-m:2  7.887217999  7.04935402  8.7250820 0.0000000
m:7-m:2  8.231563445  7.39056617  9.0725607 0.0000000
f:8-m:2  9.092382368  8.22140761  9.9633571 0.0000000
m:8-m:2  8.808156163  7.92766524  9.6886471 0.0000000
m:3-f:3  0.405228465 -0.13578346  0.9462404 0.4221367
f:4-f:3  1.969997793  1.46166478  2.4783308 0.0000000
m:4-f:3  2.394719246  1.89762897  2.8918095 0.0000000
f:5-f:3  4.000585840  3.49977062  4.5014011 0.0000000
m:5-f:3  4.047720325  3.55206739  4.5433733 0.0000000
f:6-f:3  5.400438253  4.89224417  5.9086323 0.0000000
m:6-f:3  5.231923295  4.71940255  5.7444440 0.0000000
f:7-f:3  6.561142174  6.03389412  7.0883902 0.0000000
m:7-f:3  6.905487620  6.37327442  7.4377008 0.0000000
f:8-f:3  7.766306543  7.18788499  8.3447281 0.0000000
m:8-f:3  7.482080337  6.88942637  8.0747343 0.0000000
f:4-m:3  1.564769328  1.07871270  2.0508260 0.0000000
m:4-m:3  1.989490781  1.51520464  2.4637769 0.0000000
f:5-m:3  3.595357375  3.11716862  4.0735461 0.0000000
m:5-m:3  3.642491860  3.16971239  4.1152713 0.0000000
f:6-m:3  4.995209787  4.50929846  5.4811211 0.0000000
m:6-m:3  4.826694830  4.33626022  5.3171294 0.0000000
f:7-m:3  6.155913709  5.65010831  6.6617191 0.0000000
m:7-m:3  6.500259155  5.98928021  7.0112381 0.0000000
f:8-m:3  7.361078078  6.80213257  7.9200236 0.0000000
m:8-m:3  7.076851872  6.50319055  7.6505132 0.0000000
m:4-f:4  0.424721453 -0.01192015  0.8613631 0.0668946
f:5-f:4  2.030588047  1.58971048  2.4714656 0.0000000
m:5-f:4  2.077722532  1.64271796  2.5127271 0.0000000
f:6-f:4  3.430440460  2.98119847  3.8796825 0.0000000
m:6-f:4  3.261925502  2.80779484  3.7160562 0.0000000
f:7-f:4  4.591144381  4.12045589  5.0618329 0.0000000
m:7-f:4  4.935489827  4.45924616  5.4117335 0.0000000
f:8-f:4  5.796308750  5.26892973  6.3236878 0.0000000
m:8-f:4  5.512082545  4.96913148  6.0550336 0.0000000
f:5-m:4  1.605866594  1.17800058  2.0337326 0.0000000
m:5-m:4  1.653001078  1.23118920  2.0748130 0.0000000
f:6-m:4  3.005719006  2.56923916  3.4421989 0.0000000
m:6-m:4  2.837204048  2.39569420  3.2787139 0.0000000
f:7-m:4  4.166422928  3.70789927  4.6249466 0.0000000
m:7-m:4  4.510768373  4.04654394  4.9749928 0.0000000
f:8-m:4  5.371587296  4.85503631  5.8881383 0.0000000
m:8-m:4  5.087361091  4.55492128  5.6198009 0.0000000
m:5-f:5  0.047134485 -0.37906079  0.4733298 1.0000000
f:6-f:5  1.399852412  0.95913504  1.8405698 0.0000000
m:6-f:5  1.231337454  0.78563790  1.6770370 0.0000000
f:7-f:5  2.560556334  2.09799705  3.0231156 0.0000000
m:7-f:5  2.904901779  2.43669086  3.3731127 0.0000000
f:8-f:5  3.765720703  3.24558412  4.2858573 0.0000000
m:8-f:5  3.481494497  2.94557538  4.0174136 0.0000000
f:6-m:5  1.352717928  0.91787572  1.7875601 0.0000000
m:6-m:5  1.184202970  0.74431204  1.6240939 0.0000000
f:7-m:5  2.513421849  2.05645683  2.9703869 0.0000000
m:7-m:5  2.857767295  2.39508230  3.3204523 0.0000000
f:8-m:5  3.718586218  3.20341827  4.2337542 0.0000000
m:8-m:5  3.434360013  2.90326187  3.9654582 0.0000000
m:6-f:6 -0.168514958 -0.62249009  0.2854602 0.9968060
f:7-f:6  1.160703921  0.69016548  1.6312424 0.0000000
m:7-f:6  1.505049367  1.02895400  1.9811447 0.0000000
f:8-f:6  2.365868290  1.83862318  2.8931134 0.0000000
m:8-f:6  2.081642085  1.53882109  2.6244631 0.0000000
f:7-m:6  1.329218879  0.85401081  1.8044269 0.0000000
m:7-m:6  1.673564325  1.19285330  2.1542753 0.0000000
f:8-m:6  2.534383248  2.00296656  3.0657999 0.0000000
m:8-m:6  2.250157043  1.70328327  2.7970308 0.0000000
m:7-f:7  0.344345446 -0.15203755  0.8407284 0.5648416
f:8-f:7  1.205164369  0.65953016  1.7507986 0.0000000
m:8-f:7  0.920938164  0.36023867  1.4816377 0.0000022
f:8-m:7  0.860818923  0.31038540  1.4112524 0.0000101
m:8-m:7  0.576592718  0.01122178  1.1419637 0.0401330
m:8-f:8 -0.284226205 -0.89329509  0.3248427 0.9688007
r 

7747 artık serbestlik derecesi çoktur; veri kümenizin kişi başına birden fazla yanıtı olması mümkün mü? Bu durumda, her bir kişinin yanıtlarını bir ortalamaya (ezANOVA tarafından ez paketinden otomatik olarak yapılır) daraltmak veya tekrarlanan ölçümleri hesaba katmanıza izin veren karışık efekt modelleri gibi bir şey kullanmak isteyebilirsiniz (ezMixed ez paketi).
Mike Lawrence

"Karma efekt modelleri gibi daha güçlü bir şey kullanmak" demek istedim. Ayrıca, ezMixed kodunun en son sürümü için (ezPlot2 aracılığıyla görselleştirmeden bahsetmemek için sınıf gibi sürekli değişkenlerin muhtemelen doğrusal olmayan etkilerinin güçlü bir şekilde değerlendirilmesine izin veren), internete bağlıyken bu ezDev işlevini kaynaklayın ve çalıştırın: raw.github .com / mike-lawrence / ez / master / R / ezDev.R
Mike Lawrence

Yanıtlar:


15

0 ve 1'in hepsi, 0 veya 1'e çok yakın oldukları anlamına gelir. Dikkatlice bakarsanız, ayarlanan p 1 olduğunda, etkinin neredeyse 0 ve ayarlanan p 0 olduğunda daha yakın sınır olduğunu görürsünüz. etkisi çok uzak. Bu nedenle, "yanlış" bir şey yoktur. Şimdi kaç tane önemli basamağınız olduğuna bakın. 1 veya 0, bu değere, o kadar basamaklı bir sayı ile temsil edilebileceğinden daha yakın olduğu anlamına gelir. <0.0001 veya> 0.9999 gibi bir şeyi bildirmekten çekinmeyin.


+1 - Bunlar sadece keyfi yuvarlama eşikleri. Ve gerçekten * nefret temelli önem raporlamamın nedenlerinden biri.
Fomite

3
Bu kadar büyük bir örneklem büyüklüğü ile, gerçekten küçük p değerleri bulmak şaşırtıcı değildir. Sanırım burada pratik ve istatistiksel anlamlılık sorununu gündeme getiriyor ve güven aralıklarına p değerlerinden daha fazla ilgi duyacağım.
Glen

@John, p değeri 1,00 veya 1,000 olarak bildirmeyle ilgili bir sorun olacağını mı ima ediyorsunuz? Bunu yaparken yanlış bir şey görmezdim.
mark999

Glen, katılıyorum ...
John

mark999, bu şekilde rapor etmelisiniz. Bununla ilgili tek sorunum bu sayıların özel olarak yorumlanma eğiliminde olmasıdır. Hepimiz herhangi bir değerin bir tahmin olacağını biliyoruz, ancak 1.0 ve 0.0, tıpkı bu sorgulayıcıda olduğu gibi istatistiksel acemiler için özel veya kafa karıştırıcı olarak düşünülebilir. Bu soruyu soran karışıklık daha sonra raporun okuyucularında olacaktır.
John
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.