Bu otomatik kodlayıcı ağının işlevi düzgün şekilde yapılamıyor (evrişimli ve makspool katmanlarla)


9

Otomatik kodlayıcı ağları normal sınıflandırıcı MLP ağlarından çok daha karmaşık görünmektedir. Lasagne kullanarak yapılan birkaç denemeden sonra , yeniden yapılandırılmış çıktıda elde ettiğim her şey, en iyi şekilde , giriş basamağının gerçekte ne olduğunu ayırt etmeden MNIST veritabanının tüm görüntülerinin bulanık bir ortalamasına benzeyen bir şeydir .

Seçtiğim ağ yapısı aşağıdaki basamaklı katmanlardır:

  1. giriş katmanı (28x28)
  2. 2D evrişim tabakası, filtre boyutu 7x7
  3. Maksimum Havuzlama katmanı, boyut 3x3, adım 2x2
  4. Yoğun (tamamen bağlı) düzleştirme tabakası, 10 adet (bu darboğaz)
  5. Yoğun (tamamen bağlı) katman, 121 ünite
  6. Katmanı 11x11'e yeniden şekillendirme
  7. 2D evrişim tabakası, filtre boyutu 3x3
  8. 2D Yükseltme katmanı faktörü 2
  9. 2D evrişim tabakası, filtre boyutu 3x3
  10. 2D Yükseltme katmanı faktörü 2
  11. 2D evrişim tabakası, filtre boyutu 5x5
  12. Maksimum havuzlama özelliği (31x28x28 - 28x28 arası)

Tüm 2B evrişimli katmanlar, önyargısız, sigmoid aktivasyonlara ve 31 filtreye sahiptir.

Tamamen bağlı tüm katmanların sigmoid aktivasyonları vardır.

Kullanılan kayıp fonksiyonu kare hatası , güncelleme fonksiyonu adagrad. Öğrenme için parçanın uzunluğu 100 örnek olup 1000 dönemle çarpılır.

Aşağıdakiler sorunun bir örneğidir: üst sıra ağın girişleri olarak ayarlanmış bazı örneklerdir, alt sıra yeniden yapılanmadır:

otomatik kodlayıcı giriş ve çıkışı

Sadece bütünlük için, kullandığım kod:

import theano.tensor as T
import theano
import sys
sys.path.insert(0,'./Lasagne') # local checkout of Lasagne
import lasagne
from theano import pp
from theano import function
import gzip
import numpy as np
from sklearn.preprocessing import OneHotEncoder
import matplotlib.pyplot as plt
def load_mnist():

    def load_mnist_images(filename):
        with gzip.open(filename, 'rb') as f:
            data = np.frombuffer(f.read(), np.uint8, offset=16)
        # The inputs are vectors now, we reshape them to monochrome 2D images,
        # following the shape convention: (examples, channels, rows, columns)
        data = data.reshape(-1, 1, 28, 28)
        # The inputs come as bytes, we convert them to float32 in range [0,1].
        # (Actually to range [0, 255/256], for compatibility to the version
        # provided at http://deeplearning.net/data/mnist/mnist.pkl.gz.)
        return data / np.float32(256)

    def load_mnist_labels(filename):
        # Read the labels in Yann LeCun's binary format.
        with gzip.open(filename, 'rb') as f:
            data = np.frombuffer(f.read(), np.uint8, offset=8)
        # The labels are vectors of integers now, that's exactly what we want.
        return data

    X_train = load_mnist_images('train-images-idx3-ubyte.gz')
    y_train = load_mnist_labels('train-labels-idx1-ubyte.gz')
    X_test = load_mnist_images('t10k-images-idx3-ubyte.gz')
    y_test = load_mnist_labels('t10k-labels-idx1-ubyte.gz')
    return X_train, y_train, X_test, y_test

def plot_filters(conv_layer):
    W = conv_layer.get_params()[0]
    W_fn = theano.function([],W)
    params = W_fn()
    ks = np.squeeze(params)
    kstack = np.vstack(ks)
    plt.imshow(kstack,interpolation='none')
    plt.show()

def main():

    #theano.config.exception_verbosity="high"
    #theano.config.optimizer='None'

    X_train, y_train, X_test, y_test = load_mnist()
    ohe = OneHotEncoder()

    y_train = ohe.fit_transform(np.expand_dims(y_train,1)).toarray()
    chunk_len = 100
    visamount = 10
    num_epochs = 1000
    num_filters=31
    dropout_p=.0
    print "X_train.shape",X_train.shape,"y_train.shape",y_train.shape
    input_var = T.tensor4('X')
    output_var = T.tensor4('X')
    conv_nonlinearity = lasagne.nonlinearities.sigmoid
    net = lasagne.layers.InputLayer((chunk_len,1,28,28), input_var)
    conv1 = net = lasagne.layers.Conv2DLayer(net,num_filters,(7,7),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.MaxPool2DLayer(net,(3,3),stride=(2,2))
    net = lasagne.layers.DropoutLayer(net,p=dropout_p)
    #conv2_layer = lasagne.layers.Conv2DLayer(dropout_layer,num_filters,(3,3),nonlinearity=conv_nonlinearity)
    #pool2_layer = lasagne.layers.MaxPool2DLayer(conv2_layer,(3,3),stride=(2,2))
    net = lasagne.layers.DenseLayer(net,10,nonlinearity=lasagne.nonlinearities.sigmoid)

    #augment_layer1 = lasagne.layers.DenseLayer(reduction_layer,33,nonlinearity=lasagne.nonlinearities.sigmoid)
    net = lasagne.layers.DenseLayer(net,121,nonlinearity=lasagne.nonlinearities.sigmoid)

    net = lasagne.layers.ReshapeLayer(net,(chunk_len,1,11,11))

    net = lasagne.layers.Conv2DLayer(net,num_filters,(3,3),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.Upscale2DLayer(net,2)

    net = lasagne.layers.Conv2DLayer(net,num_filters,(3,3),nonlinearity=conv_nonlinearity,untie_biases=True)
    #pool_after0 = lasagne.layers.MaxPool2DLayer(conv_after1,(3,3),stride=(2,2))
    net = lasagne.layers.Upscale2DLayer(net,2)

    net = lasagne.layers.DropoutLayer(net,p=dropout_p)

    #conv_after2 = lasagne.layers.Conv2DLayer(upscale_layer1,num_filters,(3,3),nonlinearity=conv_nonlinearity,untie_biases=True)
    #pool_after1 = lasagne.layers.MaxPool2DLayer(conv_after2,(3,3),stride=(1,1))
    #upscale_layer2 = lasagne.layers.Upscale2DLayer(pool_after1,4)

    net = lasagne.layers.Conv2DLayer(net,num_filters,(5,5),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.FeaturePoolLayer(net,num_filters,pool_function=theano.tensor.max)
    print "output_shape:",lasagne.layers.get_output_shape(net)
    params = lasagne.layers.get_all_params(net, trainable=True)
    prediction = lasagne.layers.get_output(net)
    loss = lasagne.objectives.squared_error(prediction, output_var)
    #loss = lasagne.objectives.binary_crossentropy(prediction, output_var)
    aggregated_loss = lasagne.objectives.aggregate(loss)
    updates = lasagne.updates.adagrad(aggregated_loss,params)
    train_fn = theano.function([input_var, output_var], loss, updates=updates)

    test_prediction = lasagne.layers.get_output(net, deterministic=True)
    predict_fn = theano.function([input_var], test_prediction)

    print "starting training..."
    for epoch in range(num_epochs):
        selected = list(set(np.random.random_integers(0,59999,chunk_len*4)))[:chunk_len]
        X_train_sub = X_train[selected,:]
        _loss = train_fn(X_train_sub, X_train_sub)
        print("Epoch %d: Loss %g" % (epoch + 1, np.sum(_loss) / len(X_train)))
        """
        chunk = X_train[0:chunk_len,:,:,:]
        result = predict_fn(chunk)
        vis1 = np.hstack([chunk[j,0,:,:] for j in range(visamount)])
        vis2 = np.hstack([result[j,0,:,:] for j in range(visamount)])
        plt.imshow(np.vstack([vis1,vis2]))
        plt.show()
        """
    print "done."

    chunk = X_train[0:chunk_len,:,:,:]
    result = predict_fn(chunk)
    print "chunk.shape",chunk.shape
    print "result.shape",result.shape
    plot_filters(conv1)
    for i in range(chunk_len/visamount):
        vis1 = np.hstack([chunk[i*visamount+j,0,:,:] for j in range(visamount)])
        vis2 = np.hstack([result[i*visamount+j,0,:,:] for j in range(visamount)])
        plt.imshow(np.vstack([vis1,vis2]))
        plt.show()
    import ipdb; ipdb.set_trace()

if __name__ == "__main__":
    main()

Makul bir şekilde çalışan bir otomatik kodlayıcı elde etmek için bu ağın nasıl geliştirileceğine dair herhangi bir fikir var mı?

Sorun çözüldü!

Evrişimsel katmanlarda sigmoid fonksiyon yerine sızdıran bir doğrultucu kullanarak oldukça farklı bir uygulama ile darboğaz tabakasında sadece 2 (!!) düğüm ve en sonunda 1x1 çekirdekli kıvrımlar.

İşte bazı yeniden yapılanmanın sonucu:

resim açıklamasını buraya girin

Kod:

import theano.tensor as T
import theano
import sys
sys.path.insert(0,'./Lasagne') # local checkout of Lasagne
import lasagne
from theano import pp
from theano import function
import theano.tensor.nnet
import gzip
import numpy as np
from sklearn.preprocessing import OneHotEncoder
import matplotlib.pyplot as plt
def load_mnist():

    def load_mnist_images(filename):
        with gzip.open(filename, 'rb') as f:
            data = np.frombuffer(f.read(), np.uint8, offset=16)
        # The inputs are vectors now, we reshape them to monochrome 2D images,
        # following the shape convention: (examples, channels, rows, columns)
        data = data.reshape(-1, 1, 28, 28)
        # The inputs come as bytes, we convert them to float32 in range [0,1].
        # (Actually to range [0, 255/256], for compatibility to the version
        # provided at http://deeplearning.net/data/mnist/mnist.pkl.gz.)
        return data / np.float32(256)

    def load_mnist_labels(filename):
        # Read the labels in Yann LeCun's binary format.
        with gzip.open(filename, 'rb') as f:
            data = np.frombuffer(f.read(), np.uint8, offset=8)
        # The labels are vectors of integers now, that's exactly what we want.
        return data

    X_train = load_mnist_images('train-images-idx3-ubyte.gz')
    y_train = load_mnist_labels('train-labels-idx1-ubyte.gz')
    X_test = load_mnist_images('t10k-images-idx3-ubyte.gz')
    y_test = load_mnist_labels('t10k-labels-idx1-ubyte.gz')
    return X_train, y_train, X_test, y_test

def main():

    X_train, y_train, X_test, y_test = load_mnist()
    ohe = OneHotEncoder()

    y_train = ohe.fit_transform(np.expand_dims(y_train,1)).toarray()
    chunk_len = 100
    num_epochs = 10000
    num_filters=7
    input_var = T.tensor4('X')
    output_var = T.tensor4('X')
    #conv_nonlinearity = lasagne.nonlinearities.sigmoid
    #conv_nonlinearity = lasagne.nonlinearities.rectify
    conv_nonlinearity = lasagne.nonlinearities.LeakyRectify(.1)
    softplus = theano.tensor.nnet.softplus
    #conv_nonlinearity = theano.tensor.nnet.softplus
    net = lasagne.layers.InputLayer((chunk_len,1,28,28), input_var)
    conv1 = net = lasagne.layers.Conv2DLayer(net,num_filters,(7,7),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.MaxPool2DLayer(net,(3,3),stride=(2,2))
    net = lasagne.layers.DenseLayer(net,2,nonlinearity=lasagne.nonlinearities.sigmoid)
    net = lasagne.layers.DenseLayer(net,49,nonlinearity=lasagne.nonlinearities.sigmoid)
    net = lasagne.layers.ReshapeLayer(net,(chunk_len,1,7,7))
    net = lasagne.layers.Conv2DLayer(net,num_filters,(3,3),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.MaxPool2DLayer(net,(3,3),stride=(1,1))
    net = lasagne.layers.Upscale2DLayer(net,4)
    net = lasagne.layers.Conv2DLayer(net,num_filters,(3,3),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.MaxPool2DLayer(net,(3,3),stride=(1,1))
    net = lasagne.layers.Upscale2DLayer(net,4)
    net = lasagne.layers.Conv2DLayer(net,num_filters,(5,5),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.Conv2DLayer(net,num_filters,(1,1),nonlinearity=conv_nonlinearity,untie_biases=True)
    net = lasagne.layers.FeaturePoolLayer(net,num_filters,pool_function=theano.tensor.max)
    net = lasagne.layers.Conv2DLayer(net,1,(1,1),nonlinearity=conv_nonlinearity,untie_biases=True)
    print "output shape:",net.output_shape
    params = lasagne.layers.get_all_params(net, trainable=True)
    prediction = lasagne.layers.get_output(net)
    loss = lasagne.objectives.squared_error(prediction, output_var)
    #loss = lasagne.objectives.binary_hinge_loss(prediction, output_var)
    aggregated_loss = lasagne.objectives.aggregate(loss)
    #updates = lasagne.updates.adagrad(aggregated_loss,params)
    updates = lasagne.updates.nesterov_momentum(aggregated_loss,params,0.5)#.005
    train_fn = theano.function([input_var, output_var], loss, updates=updates)

    test_prediction = lasagne.layers.get_output(net, deterministic=True)
    predict_fn = theano.function([input_var], test_prediction)

    print "starting training..."
    for epoch in range(num_epochs):
        selected = list(set(np.random.random_integers(0,59999,chunk_len*4)))[:chunk_len]
        X_train_sub = X_train[selected,:]
        _loss = train_fn(X_train_sub, X_train_sub)
        print("Epoch %d: Loss %g" % (epoch + 1, np.sum(_loss) / len(X_train)))
    print "done."

    chunk = X_train[0:chunk_len,:,:,:]
    result = predict_fn(chunk)
    print "chunk.shape",chunk.shape
    print "result.shape",result.shape
    visamount = 10
    for i in range(10):
        vis1 = np.hstack([chunk[i*visamount+j,0,:,:] for j in range(visamount)])
        vis2 = np.hstack([result[i*visamount+j,0,:,:] for j in range(visamount)])
        plt.imshow(np.vstack([vis1,vis2]))
        plt.show()

    import ipdb; ipdb.set_trace()
if __name__ == "__main__":
    main()

Yanıtlar:


4

Sadece rekonstrüksiyonlar yerine ağırlıkları görselleştirerek daha fazla fikir edinebilirsiniz. Önyargılarım yanlış yapılandırıldığında benzer bir sorun yaşadım. Aşağıdaki her şey kendi öğrenme kütüphanemi yazma tecrübelerime dayanarak yazılmıştır. Kodu burada Github http://github.com/josephcatrambone/aij adresinde görebilirsiniz .

Yanlılık olmadığında programımın ekran görüntüsü. Bu yazıyı bitirmek için acele ettiğim için bu sadece on dönemden sonra:

Sadece ağırlıklar - önyargı yok.

Kilo güncellemesi şu işlemler tarafından yapılır:

weights.add_i(positiveProduct.subtract(negativeProduct).elementMultiply(learningRate / (float) batchSize));
//visibleBias.add_i(batch.subtract(negativeVisibleProbabilities).meanRow().elementMultiply(learningRate));
//hiddenBias.add_i(positiveHiddenProbabilities.subtract(negativeHiddenProbabilities).meanRow().elementMultiply(learningRate));

Görünür önyargı kodunu uncomment, bu sonucu elde:

Görünür yanlılığı düzeltin.

Görünür önyargı kodunun işaretini berbat edersem (eklemek yerine çıkarma):

visibleBias.subtract_i(batch.subtract(negativeVisibleProbabilities).meanRow().elementMultiply(learningRate));

Bu görüntüyü alıyorum:

Önyargı işareti ters.

Hangi kartopu ve sonunda yukarıdaki gibi bir şeye ulaşır. Hata işlevlerinizin işaretini kontrol edin.

Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.