Bir şeyi yanlış mı anlıyorum. Bu benim kodum
sklearn kullanma
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn import decomposition
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
pca = decomposition.PCA(n_components=3)
x = np.array([
[0.387,4878, 5.42],
[0.723,12104,5.25],
[1,12756,5.52],
[1.524,6787,3.94],
])
pca.fit_transform(x)
Çıktı:
array([[ -4.25324997e+03, -8.41288672e-01, -8.37858943e-03],
[ 2.97275001e+03, -1.25977271e-01, 1.82476780e-01],
[ 3.62475003e+03, -1.56843494e-01, -1.65224286e-01],
[ -2.34425007e+03, 1.12410944e+00, -8.87390454e-03]])
Numpy yöntemlerini kullanma
x_std = StandardScaler().fit_transform(x)
cov = np.cov(x_std.T)
ev , eig = np.linalg.eig(cov)
a = eig.dot(x_std.T)
Çıktı
array([[ 0.06406894, 0.94063993, -1.62373172],
[-0.35357757, 0.7509653 , 0.63365168],
[ 0.29312477, 0.6710958 , 1.11766206],
[-0.00361615, -2.36270102, -0.12758202]])
I have kept all 3 components but it doesnt seem to allow me to retain my original data.
Neden böyle olduğunu bilebilir miyim?
Orijinal matrisimi geri almak istersem ne yapmalıyım?
Xtanımlanmamış olanı kullanır ). Senin yeniden kontrol et matematik .