Bayes teoremi beklentileri karşılıyor mu?


18

İki rastgele değişken ve ,A ABB

E ( A B ) = E ( B A ) E ( A )E ( B ) ?

E(AB)=E(BA)E(A)E(B)?

3
Hmm ... Bu iki tarafın birbirine eşdeğer olduğunu düşünmüyorum
Jon

6
Cevaplarda belirtildiği gibi, bir taraftaki rasgele değişkenlerin diğer taraftaki koşullama değişkenleri ile entegrasyonu nedeniyle soru olasılıksız anlamsızdır.
Xi'an

Yanıtlar:


25

E [ A B ] ? = E [ B A ] E [ A ]E [ B ]

E[AB]=?E[BA]E[A]E[B](1)
Konjuge sonuç(1)(1),sıfır olmayan ortalamalara sahipbağımsızrastgele değişkenAAveBiçin önemsiz bir şekilde doğrudurB.

Eğer E [ B ] = 0E[B]=0 , daha sonra sağ tarafı ( 1 )(1) bir bölme içerir 00 ve böylece ( 1 )(1) bir anlamı yoktur. Olsun veya olmasın o Not AA ve BB bağımsız alakalı değildir.

Genel olarak , ( 1 )(1) bağımlı rastgele değişkenler için geçerli değildir, ancak bağımlı AA ve B'yiB tatmin eden ( 1 ) spesifik örnekleri (1)bulunabilir. E [ B ] 0 olduğu konusunda ısrar etmeye devam etmeliyiz E[B]0, aksi takdirde ( 1 ) '(1) in sağ tarafı anlamsızdır. Ayı akılda E [ A | B ]E[AB] bir olan rastgele değişken bir olur işlevi rasgele değişkenin BB söylemek, g (B )g(B) ise E [ B | A ]E[BA] a,rastgele değişkenbir birfonksiyonurastgele değişken bölgesinin AA , ki h ( A )h(A) . Yani, ( 1 )(1) ,

g ( B ) ? = h ( A ) E [ A ]D [ B ]

g(B)=?h(A)E[A]E[B](2)
gerçek bir açıklama olabilir, ve tabii ki cevabı olduğunug(B)g(B)bir katı olamazsaat(A)h(A) genel olarak.

Bildiğim kadarıyla, ( 1 ) 'in(1) tutabileceği sadece iki özel durum vardır .

  • Yukarıda belirtildiği gibi, bağımsız rasgele değişkenler AA ve B içinB , g ( B )g(B) ve h ( A )h(A) , sırasıyla E [ A ] ve E [ B ] 'ye eşit olan dejenere rasgele değişkenlerdir (istatistiksel olarak okuma yazma bilmeyen kişiler tarafından sabitler olarak adlandırılır) ve eğer E [ B ] 0 , ( 1 ) ' de eşitliğe sahibiz .E[A]E[B]E[B]0(1)

  • Bağımsızlık spektrum diğer ucunda, varsayalım ki bir = gr ( B )A=g(B) burada g ( )g() bir bir ters çevrilebilir fonksiyonu ve dolayısıyla bir = gr ( B )A=g(B) ve B = g - 1 ( A )B=g1(A) tamamen bağımlı rasgele değişkenlerdir. Bu durumda, E [ A B ] = g ( B ) ,D [ B | A ] = g - 1 ( A ) = g - 1 ( g ( B ) ) = B

    E[AB]=g(B),E[BA]=g1(A)=g1(g(B))=B
    ve böylece ( 1 )(1) haline g ( B ) ? = B E [ A ]E[B]
    g(B)=?BE[A]E[B]
    which holds exactly when g(x)=αxg(x)=αx where αα can be any nonzero real number. Thus, (1)(1) holds whenever AA is a scalar multiple of BB, and of course E[B]E[B] must be nonzero (cf. Michael Hardy's answer). The above development shows that g(x)g(x) must be a linear function and that (1)(1) cannot hold for affine functions g(x)=αx+βg(x)=αx+β with β0β0. However, note that Alecos Papadopolous in his answer and his comments thereafter claims that if BB is a normal random variable with nonzero mean, then for specific values of αα and β0β0 that he provides, A=αB+βA=αB+β and BB satisfy (1)(1). In my opinion, his example is incorrect.

In a comment on this answer, Huber has suggested considering the symmetric conjectured equality E[AB]E[B]?=E[BA]E[A]

E[AB]E[B]=?E[BA]E[A](3)
which of course always holds for independent random variables regardless of the values of E[A]E[A] and E[B]E[B] and for scalar multiples A=αB also. Of course, more trivially, (3) holds for any zero-mean random variables A and B (independent or dependent, scalar multiple or not; it does not matter!): E[A]=E[B]=0 is sufficient for equality in (3). Thus, (3) might not be as interesting as (1) as a topic for discussion.

9
+1. To be generous, the question could be interpreted as asking whether E(A|B)E(B)=E(B|A)E(A), where the question of division by zero disappears.
whuber

1
@whuber Thanks. My edit addresses the more general question as to whether it is possible to have E[AB]E[B]=E[BA]E[A].
Dilip Sarwate

11

The result is untrue in general, let us see that in a simple example. Let XP=p have a binomial distribution with parameters n,p and P have the beta distrubution with parameters (α,β), that is, a bayesian model with conjugate prior. Now just calculate the two sides of your formula, the left hand side is EXP=nP, while the right hand side is E(PX)EXEP=α+Xn+α+βα/(α+β)nα/(α+β)

and those are certainly not equal.

2

The conditional expected value of a random variable A given the event that B=b is a number that depends on what number b is. So call it h(b). Then the conditional expected value E(AB) is h(B), a random variable whose value is completely determined by the value of the random variable B. Thus E(AB) is a function of B and E(BA) is a function of A.

The quotient E(A)/E(B) is just a number.

So one side of your proposed equality is determined by A and the other by B, so they cannot generally be equal.

(Perhaps I should add that they can be equal in the trivial case when the values of A and B determine each other, as when for example, A=αB,α0 and E[B]0, when E[AB]=αB=E[BA]α=E[BA]αE[B]E[B]=E[BA]E[A]E[B].

But functions equal to each other only at a few points are not equal.)

You mean they are not necessarily equal? I mean they CAN be equal?
BCLC

1
@BCLC : They are equal only in trivial cases. And two functions equal to each other at some points and not at others are not equal.
Michael Hardy

2
"But only in that trivial case can they be equal" (emphasis added) is not quite correct. Consider independent A and B with E[B]0. Then, E[AB]=E[A] while E[BA]=E[B] and so E[BA]E[A]E[B]=E[B]E[A]E[B]=E[A]=E[AB].
Dilip Sarwate

@DilipSarwate I was about to say that haha!
BCLC

I edited your answer to add a few details for the case you pointed out. Please roll back if you don't like the changes.
Dilip Sarwate

-1

The expression certainly does not hold in general. For the fun of it, I show below that if A and B follow jointly a bivariate normal distribution, and have non-zero means, the result will hold if the two variables are linear functions of each other and have the same coefficient of variation (the ratio of standard deviation over mean) in absolute terms.

For jointly normals we have

E(AB)=μA+ρσAσB(BμB)

and we want to impose

μA+ρσAσB(BμB)=[μB+ρσBσA(AμA)]μAμB

μA+ρσAσB(BμB)=μA+ρσBσAμAμB(AμA)

Simplify μA and then ρ, and re-arrange to get

B=μB+σ2Bσ2AμAμB(AμA)

So this is the linear relationship that must hold between the two variables (so they are certainly dependent, with correlation coefficient equal to unity in absolute terms) in order to get the desired equality. What it implies?

First, it must also be satisfied that

E(B)μB=μB+σ2Bσ2AμAμB(E(A)μA)μB=μB

so no other restirction is imposed on the mean of B ( or of A) except of them being non-zero. Also a relation for the variance must be satisfied,

Var(B)σ2B=(σ2Bσ2AμAμB)2Var(A)

(σ2A)2σ2B=(σ2B)2σ2A(μAμB)2

(σAμA)2=(σBμB)2(cvA)2=(cvB)2

|cvA|=|cvB|

which was to be shown.

Note that equality of the coefficient of variation in absolute terms, allows the variables to have different variances, and also, one to have positive mean and the other negative.


1
Isn't this a convoluted way to A=αB where α is some scalar?
Matthew Gunn

1
@MatthewGunn Your comment is right on target. Normality has nothing to do with the matter. For random variables A and B such that A=αB, E[AB]=αB=A and similarly, E[BA]=B. Consequently, assuming that E[B]0, E[AB]=αB=E[BA]α=E[BA]αE[B]E[B]=E[BA]E[A]E[B].
No normality, no |cvA|=|cvB| etc, and actually just a rehash of a comment in Michael Hardy's answer.
Dilip Sarwate

If you write \text{Var} instaed of \operatorname{Var} then you'll see aVarX and aVar(X) instead of aVarX and aVar(X). That's why the latter is standard usage.
Michael Hardy

@MatthewGun It seems to me that providing answers that contain specific examples is considered valuable content in this site. So yes, when a random variable is an affine function of another, and they are jointly normal with non-zero means, then one needs to have equal coefficients of variation, while, also there are no restrictions on the means of these rv's. On the other hand, when a random variable is just a linear function of another, the relation holds always. So no my answer is not a convoluted way to say A=aB. (cc:@DilipSarwate)
Alecos Papadopoulos

2
If B is a non-normal random variable with E[B]=μB0 and A=cB+d (and so B=Adc), then E[AB]=cB+d=A,E[BA]=Adc=B.
Now, if we want to have E[AB]=cB+d to equal E[BA]μAμB=BμAμB, it must be that cB+d=BμAμBd=0,c=μAμB
and so A=cB=μAμBB. So, for nonnormal B, the OP's conjectured result holds if A=cB but not if A=cB+d,d0.Of course, as you have proved, the result holds for normal random variables if A=cB+d,d0 .
Dilip Sarwate
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.