Ben de bu soruya ilgi duyuyorum ve daha iyi CalibratedClassifierCV (CCCV) anlamak için bazı deneyler eklemek istedim.
Daha önce de söylendiği gibi, onu kullanmanın iki yolu vardır.
#Method 1, train classifier within CCCV
model = CalibratedClassifierCV(my_clf)
model.fit(X_train_val, y_train_val)
#Method 2, train classifier and then use CCCV on DISJOINT set
my_clf.fit(X_train, y_train)
model = CalibratedClassifierCV(my_clf, cv='prefit')
model.fit(X_val, y_val)
Alternatif olarak, ikinci yöntemi deneyebiliriz, ancak taktığımız aynı verileri kalibre edebiliriz.
#Method 2 Non disjoint, train classifier on set, then use CCCV on SAME set used for training
my_clf.fit(X_train_val, y_train_val)
model = CalibratedClassifierCV(my_clf, cv='prefit')
model.fit(X_train_val, y_train_val)
Dokümanlar ayrık bir küme kullanmak için uyarsa da, bu daha sonra incelemenize izin verdiği için yararlı olabilir my_clf
(örneğin, coef_
CalibratedClassifierCV nesnesinden kullanılamayanları görmek için ). (Herkes bunu kalibre edilmiş sınıflandırıcılardan nasıl alacağını biliyor mu? Birincisi, bunlardan üç tane var, bu yüzden ortalama katsayılar olur mu?
Bu 3 yöntemi tamamen yapılan bir test setindeki kalibrasyonları açısından karşılaştırmaya karar verdim.
İşte bir veri kümesi:
X, y = datasets.make_classification(n_samples=500, n_features=200,
n_informative=10, n_redundant=10,
#random_state=42,
n_clusters_per_class=1, weights = [0.8,0.2])
Bazı sınıf dengesizliklerine girdim ve bunu zor bir problem haline getirmek için sadece 500 örnek verdim.
Her seferinde her yöntemi denemek ve kalibrasyon eğrisini çizmek için 100 deneme çalıştırıyorum.
Brier'in boxplotları tüm denemelerde puanlar:
Numune sayısını 10.000'e çıkarmak:
Sınıflandırıcıyı Naive Bayes olarak değiştirirsek, 500 örneğe geri döneriz:
Kalibrasyon için yeterli örnek yok gibi görünüyor. Örneklerin 10.000'e çıkarılması
Tam kod
print(__doc__)
# Based on code by Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import brier_score_loss
from sklearn.calibration import CalibratedClassifierCV, calibration_curve
from sklearn.model_selection import train_test_split
def plot_calibration_curve(clf, name, ax, X_test, y_test, title):
y_pred = clf.predict(X_test)
if hasattr(clf, "predict_proba"):
prob_pos = clf.predict_proba(X_test)[:, 1]
else: # use decision function
prob_pos = clf.decision_function(X_test)
prob_pos = \
(prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min())
clf_score = brier_score_loss(y_test, prob_pos, pos_label=y.max())
fraction_of_positives, mean_predicted_value = \
calibration_curve(y_test, prob_pos, n_bins=10, normalize=False)
ax.plot(mean_predicted_value, fraction_of_positives, "s-",
label="%s (%1.3f)" % (name, clf_score), alpha=0.5, color='k', marker=None)
ax.set_ylabel("Fraction of positives")
ax.set_ylim([-0.05, 1.05])
ax.set_title(title)
ax.set_xlabel("Mean predicted value")
plt.tight_layout()
return clf_score
fig, (ax1, ax2, ax3) = plt.subplots(nrows=3, ncols=1, figsize=(6,12))
ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated",)
ax2.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
ax3.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
scores = {'Method 1':[],'Method 2':[],'Method 3':[]}
fig, (ax1, ax2, ax3) = plt.subplots(nrows=3, ncols=1, figsize=(6,12))
ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated",)
ax2.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
ax3.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
scores = {'Method 1':[],'Method 2':[],'Method 3':[]}
for i in range(0,100):
X, y = datasets.make_classification(n_samples=10000, n_features=200,
n_informative=10, n_redundant=10,
#random_state=42,
n_clusters_per_class=1, weights = [0.8,0.2])
X_train_val, X_test, y_train_val, y_test = train_test_split(X, y, test_size=0.80,
#random_state=42
)
X_train, X_val, y_train, y_val = train_test_split(X_train_val, y_train_val, test_size=0.80,
#random_state=42
)
#my_clf = GaussianNB()
my_clf = LogisticRegression()
#Method 1, train classifier within CCCV
model = CalibratedClassifierCV(my_clf)
model.fit(X_train_val, y_train_val)
r = plot_calibration_curve(model, "all_cal", ax1, X_test, y_test, "Method 1")
scores['Method 1'].append(r)
#Method 2, train classifier and then use CCCV on DISJOINT set
my_clf.fit(X_train, y_train)
model = CalibratedClassifierCV(my_clf, cv='prefit')
model.fit(X_val, y_val)
r = plot_calibration_curve(model, "all_cal", ax2, X_test, y_test, "Method 2")
scores['Method 2'].append(r)
#Method 3, train classifier on set, then use CCCV on SAME set used for training
my_clf.fit(X_train_val, y_train_val)
model = CalibratedClassifierCV(my_clf, cv='prefit')
model.fit(X_train_val, y_train_val)
r = plot_calibration_curve(model, "all_cal", ax3, X_test, y_test, "Method 2 non Dis")
scores['Method 3'].append(r)
import pandas
b = pandas.DataFrame(scores).boxplot()
plt.suptitle('Brier score')
Bu yüzden Brier skor sonuçları kesin değildir, ancak eğrilere göre ikinci yöntemi kullanmak en iyisidir.