Doğrusal olmayan bir modelde bir gruplama değişkeninin kullanımı ile ilgili bir sorum var. Nls () işlevi faktör değişkenlerine izin vermediğinden, bir faktörün model uyum üzerindeki etkisini test edip edemeyeceğini anlamaya çalışıyorum. Aşağıda, farklı büyüme tedavilerine (çoğunlukla balık büyümesine uygulanan) bir "mevsimsel von Bertalanffy" büyüme modelini yerleştirmek istediğim bir örnek ekledim. Balığın yetiştiği gölün yanı sıra verilen yiyeceğin etkisini de test etmek istiyorum (sadece yapay bir örnek). Bu soruna geçici bir çözüm var - Chen ve ark. (1992) (ARSS - "Kalan karelerin toplamının analizi"). Başka bir deyişle, aşağıdaki örnek için,
Bunu nlme () kullanarak R'de yapmanın daha basit bir yolu olduğunu hayal ediyorum, ama sorunla karşılaşıyorum. Her şeyden önce, bir gruplama değişkeni kullanarak, serbestlik dereceleri, ayrı modellere uydurmamla elde ettiğimden daha yüksektir. İkincisi, gruplama değişkenlerini yuvalayamıyorum - problemimin nerede olduğunu göremiyorum. Nlme veya diğer yöntemleri kullanarak herhangi bir yardım büyük beğeni topluyor. Yapay örneğimin kodu aşağıdadır:
###seasonalized von Bertalanffy growth model
soVBGF <- function(S.inf, k, age, age.0, age.s, c){
S.inf * (1-exp(-k*((age-age.0)+(c*sin(2*pi*(age-age.s))/2*pi)-(c*sin(2*pi*(age.0-age.s))/2*pi))))
}
###Make artificial data
food <- c("corn", "corn", "wheat", "wheat")
lake <- c("king", "queen", "king", "queen")
#cornking, cornqueen, wheatking, wheatqueen
S.inf <- c(140, 140, 130, 130)
k <- c(0.5, 0.6, 0.8, 0.9)
age.0 <- c(-0.1, -0.05, -0.12, -0.052)
age.s <- c(0.5, 0.5, 0.5, 0.5)
cs <- c(0.05, 0.1, 0.05, 0.1)
PARS <- data.frame(food=food, lake=lake, S.inf=S.inf, k=k, age.0=age.0, age.s=age.s, c=cs)
#make data
set.seed(3)
db <- c()
PCH <- NaN*seq(4)
COL <- NaN*seq(4)
for(i in seq(4)){
age <- runif(min=0.2, max=5, 100)
age <- age[order(age)]
size <- soVBGF(PARS$S.inf[i], PARS$k[i], age, PARS$age.0[i], PARS$age.s[i], PARS$c[i]) + rnorm(length(age), sd=3)
PCH[i] <- c(1,2)[which(levels(PARS$food) == PARS$food[i])]
COL[i] <- c(2,3)[which(levels(PARS$lake) == PARS$lake[i])]
db <- rbind(db, data.frame(age=age, size=size, food=PARS$food[i], lake=PARS$lake[i], pch=PCH[i], col=COL[i]))
}
#visualize data
plot(db$size ~ db$age, col=db$col, pch=db$pch)
legend("bottomright", legend=paste(PARS$food, PARS$lake), col=COL, pch=PCH)
###fit growth model
library(nlme)
starting.values <- c(S.inf=140, k=0.5, c=0.1, age.0=0, age.s=0)
#fit to pooled data ("small model")
fit0 <- nls(size ~ soVBGF(S.inf, k, age, age.0, age.s, c),
data=db,
start=starting.values
)
summary(fit0)
#fit to each lake separatly ("large model")
fit.king <- nls(size ~ soVBGF(S.inf, k, age, age.0, age.s, c),
data=db,
start=starting.values,
subset=db$lake=="king"
)
summary(fit.king)
fit.queen <- nls(size ~ soVBGF(S.inf, k, age, age.0, age.s, c),
data=db,
start=starting.values,
subset=db$lake=="queen"
)
summary(fit.queen)
#analysis of residual sum of squares (F-test)
resid.small <- resid(fit0)
resid.big <- c(resid(fit.king),resid(fit.queen))
df.small <- summary(fit0)$df
df.big <- summary(fit.king)$df+summary(fit.queen)$df
F.value <- ((sum(resid.small^2)-sum(resid.big^2))/(df.big[1]-df.small[1])) / (sum(resid.big^2)/(df.big[2]))
P.value <- pf(F.value , (df.big[1]-df.small[1]), df.big[2], lower.tail = FALSE)
F.value; P.value
###plot models
plot(db$size ~ db$age, col=db$col, pch=db$pch)
legend("bottomright", legend=paste(PARS$food, PARS$lake), col=COL, pch=PCH)
legend("topleft", legend=c("soVGBF pooled", "soVGBF king", "soVGBF queen"), col=c(1,2,3), lwd=2)
#plot "small" model (pooled data)
tmp <- data.frame(age=seq(min(db$age), max(db$age),,100))
pred <- predict(fit0, tmp)
lines(tmp$age, pred, col=1, lwd=2)
#plot "large" model (seperate fits)
tmp <- data.frame(age=seq(min(db$age), max(db$age),,100), lake="king")
pred <- predict(fit.king, tmp)
lines(tmp$age, pred, col=2, lwd=2)
tmp <- data.frame(age=seq(min(db$age), max(db$age),,100), lake="queen")
pred <- predict(fit.queen, tmp)
lines(tmp$age, pred, col=3, lwd=2)
###Can this be done in one step using a grouping variable?
#with "lake" as grouping variable
starting.values <- c(S.inf=140, k=0.5, c=0.1, age.0=0, age.s=0)
fit1 <- nlme(model = size ~ soVBGF(S.inf, k, age, age.0, age.s, c),
data=db,
fixed = S.inf + k + c + age.0 + age.s ~ 1,
group = ~ lake,
start=starting.values
)
summary(fit1)
#similar residuals to the seperatly fitted models
sum(resid(fit.king)^2+resid(fit.queen)^2)
sum(resid(fit1)^2)
#but different degrees of freedom? (10 vs. 21?)
summary(fit.king)$df+summary(fit.queen)$df
AIC(fit1, fit0)
###I would also like to nest my grouping factors. This doesn't work...
#with "lake" and "food" as grouping variables
starting.values <- c(S.inf=140, k=0.5, c=0.1, age.0=0, age.s=0)
fit2 <- nlme(model = size ~ soVBGF(S.inf, k, age, age.0, age.s, c),
data=db,
fixed = S.inf + k + c + age.0 + age.s ~ 1,
group = ~ lake/food,
start=starting.values
)
Referans: Chen, Y., Jackson, DA ve Harvey, HH, 1992. Balık büyüme verilerinin modellenmesinde von Bertalanffy ve polinom fonksiyonlarının karşılaştırılması. 49, 6: 1228-1235'te açıklanmaktadır.