İstatistiklerde çok iyi değilim, bu basit bir soru ise özür dilerim. Bazı verilere bir eğri uydurma ediyorum ve bazen benim verilerini en uygun biçimde olumsuz üssünü ve bazen uyum yakın olan bir * e ( - b * x 2 ) + c . Ancak, bazen her ikisi de başarısız olur ve ben doğrusal bir uyum için geri dönmek istiyorum. Benim sorum, hangi modelin belirli bir veri setine uyduğunu nasıl belirtebilirim?scipy.optimize.curve_fit () işlevi? Varyansın bu matrisin köşegenlerinden birinde olduğuna inanıyorum, ancak bunu nasıl yorumlayacağımdan emin değilim.
GÜNCELLEME: Benzer bir soruya dayanarak , varyans-kovaryans matrisinin bana hangi üç modelden hangisinin verilere uyduğunu söyleyebileceğini umuyorum (birçok veri kümesini bu üç modelden birine sığdırmaya çalışıyorum).
Ortaya çıkan matrisler verilen örnek için şu şekildedir:
pcov_lin
[[ 2.02186921e-05 -2.02186920e-04]
[ -2.02186920e-04 2.76322124e-03]]
pcov_exp
[[ 9.05390292e+00 -7.76201283e-02 -9.20475334e+00]
[ -7.76201283e-02 6.69727245e-04 7.90218415e-02]
[ -9.20475334e+00 7.90218415e-02 9.36160310e+00]]
pcov_exp_2
[[ 1.38338049e-03 -7.39204594e-07 -7.81208814e-04]
[ -7.39204594e-07 8.99295434e-09 1.92970700e-06]
[ -7.81208814e-04 1.92970700e-06 9.14746758e-04]]
İşte ne yaptığım bir örnek:
import numpy as np
import matplotlib.pyplot as plt
import scipy as sp
import scipy.optimize
def exp_func(x, a, b, c):
return a * np.exp(-b * x) + c
def exp_squared_func(x, a, b, c):
return a * np.exp(-b * x*x*x) + c
def linear_func(x, a, b):
return a*x + b
def main():
x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], np.float)
y = np.array([1, 1, 1, 1, 0.805621, 0.798992, 0.84231, 0.728796, 0.819471, 0.570414, 0.355124, 0.276447, 0.159058, 0.0762189, 0.0167807, 0.0118647, 0.000319948, 0.00118267, 0, 0, 0], np.float)
p0 = [0.7746042467213462, 0.10347274384077858, -0.016253458007293588]
popt_lin, pcov_lin = scipy.optimize.curve_fit(linear_func, x, y)
popt_exp, pcov_exp = scipy.optimize.curve_fit(exp_func, x, y)
popt_exp_2, pcov_exp_2 = scipy.optimize.curve_fit(exp_squared_func, x, y)
plt.figure()
plt.plot(x, y, 'ko', label="Original data")
plt.plot(x, linear_func(x, *popt_lin), 'r-', label='linear')
plt.plot(x, exp_func(x, *popt_exp), 'b-', label='exponential')
plt.plot(x, exp_squared_func(x, *popt_exp_2), 'g-', label='exponential squared')
plt.legend()
plt.show()
if __name__ == '__main__':
main()