Size oyun oynamak ise sen tarafından kazanmak zorunda noktaları, , oyuncuların 6 puan oynayabilir varsayabiliriz. Eğer hiçbir oyuncu kazanamazsa , skor bağlanır ve daha sonra bir oyuncu her ikisini de kazanana kadar puan çiftleri oynarsınız. Bu , her puanı kazanma şansınız olduğunda, puana oyun kazanma şansı ,4223−34p
p6+6p5(1−p)+15p4(1−p)2+20p3(1−p)3p2p2+(1−p)2
.
Üst düzey erkek oyununda sunucu için yaklaşık olabilir . ( Erkekler ikinci olurdu .) Bu formüle göre, servis tutma şansı yaklaşık .p0.650.6682.96%
Diyelim ki puanlık bir tiebreak oynuyorsunuz . Puanların, her oyuncunun her bir çiftten birine hizmet ettiği çiftler halinde oynandığını varsayabilirsiniz. İlk kimin hizmet ettiği önemli değil. Oyuncuların puan oynadığını varsayabilirsiniz . Bu noktada bağlanırlarsa, bir oyuncu bir çiftin ikisini de kazanana kadar çifti oynarlar, bu da koşullu kazanma şansının olduğu anlamına gelir . Doğru hesaplarsam, bir tiebreak oyuncuyu puan kazanma şansı712pspr/(pspr+(1−ps)(1−pr))7
6p6rps+90p5rp2s−105p6rp2s+300p4rp3s−840p5rp3s+560p6rp3s+300p3rp4s−1575p4rp4s+2520p5rp4s−1260p6rp4s+90p2rp5s−840p3rp5s+2520p4rp5s−3024p5rp5s+1260p6rp5s+6prp6s−105p2rp6s+560p3rp6s−1260p4rp6s+1260p5rp6s−462p6rp6s+prpsprps+(1−pr)(1−ps)(p6r+36p5rps−42p6rps+225p4rp2s−630p5rp2s+420p6rp2s+400p3rp3s−2100p4rp3s+3360p5rp3s−1680p6rp3s+225p2rp4s−2100p3rp4s+6300p4rp4s−7560p5rp4s+3150p6rp4s+36prp5s−630p2rp5s+3360p3rp5s−7560p4rp5s+7560p5rp5s−2772p6rp5s+p6s−42prp6s+420p2rp6s−1680p3rp6s+3150p4rp6s−2772p5rp6s+924p6rp6s)
Eğer ardından tie-kesici kazanma şansı hakkındadır .ps=0.65,pr=0.3651.67%
Sonra bir set düşünün. İlk kimin hizmet ettiği önemli değil, bu da uygun, çünkü aksi takdirde servis tutarken bir sonraki servis setini kazanırken seti kazanmayı düşünmeliyiz. oyunda bir set kazanmak için , önce oyun oynandığını hayal edebilirsiniz . Skor bağlıysa oyun daha oyna . Bunlar kazananı belirleyemezse, bir kravat kırıcı oynayın veya beşinci sette sadece oyun çiftlerini tekrarlayın. Izin vermek hizmet tutma olasılığı olmak, ve izin6105−52phpbrakibinizin servisini kırma olasılığı olabilir, bu da yukarıda bir oyun kazanma olasılığından hesaplanabilir. Bir tiebreak olmadan bir dizi kazanmak için şans biz oynuyor hariç, bir kravat-kesici kazanma şansı ile aynı temel formülü izleyen yerine kadar olan oyunlarda puan ve biz yerine tarafından ve tarafından .67psphprpb
Koşullu olasılığı olan bir beşinci grubu (bir bağlayıcı-kesici ile bir dizi) kazanmak için ve olan .ps=0.65pr=0.3653.59%
İle tie-kesici ile bir dizi kazanmak için şans ve olan .ps=0.65pr=0.3653.30%
Şans bir iyi kazanmak için setleri ile, beşinci sette hiç kravat kesicisi, maç ve olan .5ps=0.65pr=0.3656.28%
Peki, bu kazanım oranları için, aynı ayrımcı güce sahip olması için bir sette kaç oyun olması gerekir? İle , sen bir set kazanır olağan tiebreaker ile oyunlarda ve bir dizi kazanmak olası bir tiebreaker ile oyun zamanın. Kravat kırıcı olmadan, normal bir maç kazanma şansı, ve uzunluk kümeleri arasındadır . Sadece tek bir büyük kravat-kırıcı oynuyorsanız, uzunlukta bir kravat-kesici kazanma şansı olan ve uzunluğunun olduğu .24 56.22 % 25 56.34 % 23 24 113 56.27 % 114 56.29 %ps=0.65,pr=0.362456.22%2556.34%232411356.27%11456.29%
Bu, bir dev setin oynamasının en iyi 5 maçtan daha verimli olmadığını, ancak bir dev kravat kırıcısının oynamanın, en azından avantajlı bir hizmete sahip olan yakın eşleşen rakipler için daha verimli olacağını göstermektedir.
İşte Mart 2013 GammonVillage sütunumdan bir oyun, "Oyun, Küme ve Maç". Para avantajlarını sabit bir avantajla ( ) düşündüm ve bir büyük maç mı yoksa bir dizi daha kısa maç oynamanın daha mı verimli olduğunu sordum:51%
... Üçün en iyisi tek bir uzun maçtan daha az verimli ise, beşten en iyisinin daha kötü olmasını bekleyebiliriz. Tek bir maçı kazanma şansına çok yakın,
olasılık ile beş puanlık en iyi maçı kazanırsınız . en iyi olan ortalama maç sayısı , bu nedenle ortalama oyun sayısı . Tabii ki bu, olan bir maçta mümkün olan maksimum oyun sayısından daha fazla ve ortalama . Daha uzun bir maç serisi daha da az verimli görünüyor.57.51 % 45 4.115 4.115 × 21.96 = 90.37 45 82.351357.51%454.1154.115×21.96=90.374582.35
Başka bir seviye, üç maçın en iyi üç serisinin en iyisi ne dersiniz ? Her seri bir maç gibi olacağından , bu dizi serisi üç maçın en iyisi gibi olacak , sadece daha az verimli ve uzun bir maç bundan daha iyi olurdu. Yani, uzun bir maç bir dizi seriden daha verimli olacaktır.29 29132929
Bir dizi maçı bir uzun maçtan daha az verimli yapan nedir? Bunları, hangi oyuncunun daha güçlü olduğuna karar vermek için kanıt toplamak için istatistiksel testler olarak düşünün. Üç maçın en , puanlı bir seri kaybedebilirsiniz . Bu
, rakibinizin maç kazanacağınız , ancak rakibinizin seriyi kazanacağı anlamına gelir . Bir bozuk para atarsanız ve kafa ve kuyruk alırsanız, kafaların kuyruklardan daha olası olduğuna dair kanıtlarınız vardır, kuyrukların kafalardan daha olası olduğunu göstermezsiniz. Yani, üç maçın en iyisi verimsiz olduğu için verimsizdir. Bir dizi maç ortalama olarak daha fazla veri gerektirir, çünkü bazen daha az oyun kazanan oyuncuya zafer kazandırır.36 33 36 3313−7 12−13 11−1336333633