Ben elle EM algoritmayı uygulamak ve ardından sonuçlarına karşılaştırmak istediğiniz normalmixEM
bir mixtools
pakette. Tabii ki, her ikisi de aynı sonuçlara yol açarsa mutlu olurum. Ana referans, Sonlu Karışım Modelleri olan Geoffrey McLachlan (2000) .
Genelde iki Gausslu karışım yoğunluğum var, log olabilirliği (McLachlan sayfa 48):
D aşaması, hemen koşullu beklenti hesaplama:
Bir R kodu yazmaya çalıştım (veriler burada bulunabilir ).
# EM algorithm manually
# dat is the data
# initial values
pi1 <- 0.5
pi2 <- 0.5
mu1 <- -0.01
mu2 <- 0.01
sigma1 <- 0.01
sigma2 <- 0.02
loglik[1] <- 0
loglik[2] <- sum(pi1*(log(pi1) + log(dnorm(dat,mu1,sigma1)))) +
sum(pi2*(log(pi2) + log(dnorm(dat,mu2,sigma2))))
tau1 <- 0
tau2 <- 0
k <- 1
# loop
while(abs(loglik[k+1]-loglik[k]) >= 0.00001) {
# E step
tau1 <- pi1*dnorm(dat,mean=mu1,sd=sigma1)/(pi1*dnorm(x,mean=mu1,sd=sigma1) +
pi2*dnorm(dat,mean=mu2,sd=sigma2))
tau2 <- pi2*dnorm(dat,mean=mu2,sd=sigma2)/(pi1*dnorm(x,mean=mu1,sd=sigma1) +
pi2*dnorm(dat,mean=mu2,sd=sigma2))
# M step
pi1 <- sum(tau1)/length(dat)
pi2 <- sum(tau2)/length(dat)
mu1 <- sum(tau1*x)/sum(tau1)
mu2 <- sum(tau2*x)/sum(tau2)
sigma1 <- sum(tau1*(x-mu1)^2)/sum(tau1)
sigma2 <- sum(tau2*(x-mu2)^2)/sum(tau2)
loglik[k] <- sum(tau1*(log(pi1) + log(dnorm(x,mu1,sigma1)))) +
sum(tau2*(log(pi2) + log(dnorm(x,mu2,sigma2))))
k <- k+1
}
# compare
library(mixtools)
gm <- normalmixEM(x, k=2, lambda=c(0.5,0.5), mu=c(-0.01,0.01), sigma=c(0.01,0.02))
gm$lambda
gm$mu
gm$sigma
gm$loglik
Algoritma çalışmıyor, çünkü bazı gözlemler sıfır olma olasılığına sahip ve bunun günlüğü -Inf
. Benim hatam nerede?