I got it! Well, with help. I found the part of the book that gives steps to work through when proving the Var(ˆβ0)Var(β^0) formula (thankfully it doesn't actually work them out, otherwise I'd be tempted to not actually do the proof). I proved each separate step, and I think it worked.
I'm using the book's notation, which is:
SSTx=n∑i=1(xi−ˉx)2,
SSTx=∑i=1n(xi−x¯)2,
and
uiui is the error term.
1) Show that ˆβ1β^1 can be written as ˆβ1=β1+n∑i=1wiuiβ^1=β1+∑i=1nwiui where wi=diSSTxwi=diSSTx and di=xi−ˉxdi=xi−x¯.
This was easy because we know that
ˆβ1=β1+n∑i=1(xi−ˉx)uiSSTx=β1+n∑i=1diSSTxui=β1+n∑i=1wiui
β^1=β1+∑i=1n(xi−x¯)uiSSTx=β1+∑i=1ndiSSTxui=β1+∑i=1nwiui
2) Use part 1, along with n∑i=1wi=0∑i=1nwi=0 to show that ^β1β1^ and ˉuu¯ are uncorrelated, i.e. show that E[(^β1−β1)ˉu]=0E[(β1^−β1)u¯]=0.
E[(^β1−β1)ˉu]=E[ˉun∑i=1wiui]=n∑i=1E[wiˉuui]=n∑i=1wiE[ˉuui]=1nn∑i=1wiE(uin∑j=1uj)=1nn∑i=1wi[E(uiu1)+⋯+E(uiuj)+⋯+E(uiun)]
E[(β1^−β1)u¯]=E[u¯∑i=1nwiui]=∑i=1nE[wiu¯ui]=∑i=1nwiE[u¯ui]=1n∑i=1nwiE(ui∑j=1nuj)=1n∑i=1nwi[E(uiu1)+⋯+E(uiuj)+⋯+E(uiun)]
and because the uu are i.i.d., E(uiuj)=E(ui)E(uj)E(uiuj)=E(ui)E(uj) when j≠ij≠i.
When j=ij=i, E(uiuj)=E(u2i)E(uiuj)=E(u2i), so we have:
=1nn∑i=1wi[E(ui)E(u1)+⋯+E(u2i)+⋯+E(ui)E(un)]=1nn∑i=1wiE(u2i)=1nn∑i=1wi[Var(ui)+E(ui)E(ui)]=1nn∑i=1wiσ2=σ2nn∑i=1wi=σ2n⋅SSTxn∑i=1(xi−ˉx)=σ2n⋅SSTx(0)=0
=1n∑i=1nwi[E(ui)E(u1)+⋯+E(u2i)+⋯+E(ui)E(un)]=1n∑i=1nwiE(u2i)=1n∑i=1nwi[Var(ui)+E(ui)E(ui)]=1n∑i=1nwiσ2=σ2n∑i=1nwi=σ2n⋅SSTx∑i=1n(xi−x¯)=σ2n⋅SSTx(0)=0
3) Show that ^β0β0^ can be written as ^β0=β0+ˉu−ˉx(^β1−β1)β0^=β0+u¯−x¯(β1^−β1). This seemed pretty easy too:
^β0=ˉy−^β1ˉx=(β0+β1ˉx+ˉu)−^β1ˉx=β0+ˉu−ˉx(^β1−β1).
β0^=y¯−β1^x¯=(β0+β1x¯+u¯)−β1^x¯=β0+u¯−x¯(β1^−β1).
4) Use parts 2 and 3 to show that Var(^β0)=σ2n+σ2(ˉx)2SSTxVar(β0^)=σ2n+σ2(x¯)2SSTx:
Var(^β0)=Var(β0+ˉu−ˉx(^β1−β1))=Var(ˉu)+(−ˉx)2Var(^β1−β1)=σ2n+(ˉx)2Var(^β1)=σ2n+σ2(ˉx)2SSTx.
Var(β0^)=Var(β0+u¯−x¯(β1^−β1))=Var(u¯)+(−x¯)2Var(β1^−β1)=σ2n+(x¯)2Var(β1^)=σ2n+σ2(x¯)2SSTx.
I believe this all works because since we provided that ˉuu¯ and ^β1−β1β1^−β1 are uncorrelated, the covariance between them is zero, so the variance of the sum is the sum of the variance. β0β0 is just a constant, so it drops out, as does β1β1 later in the calculations.
5) Use algebra and the fact that SSTxn=1nn∑i=1x2i−(ˉx)2SSTxn=1n∑i=1nx2i−(x¯)2:
Var(^β0)=σ2n+σ2(ˉx)2SSTx=σ2SSTxSSTxn+σ2(ˉx)2SSTx=σ2SSTx(1nn∑i=1x2i−(ˉx)2)+σ2(ˉx)2SSTx=σ2n−1n∑i=1x2iSSTx
Var(β0^)=σ2n+σ2(x¯)2SSTx=σ2SSTxSSTxn+σ2(x¯)2SSTx=σ2SSTx(1n∑i=1nx2i−(x¯)2)+σ2(x¯)2SSTx=σ2n−1∑i=1nx2iSSTx