Eşzamanlılığı azaltmak için etkileşime dahil olan terimleri ortalamanız gerekir;
set.seed(10204)
x1 <- rnorm(1000, 10, 1)
x2 <- rnorm(1000, 10, 1)
y <- x1 + rnorm(1000, 5, 5) + x2*rnorm(1000) + x1*x2*rnorm(1000)
x1cent <- x1 - mean(x1)
x2cent <- x2 - mean(x2)
x1x2cent <- x1cent*x2cent
m1 <- lm(y ~ x1 + x2 + x1*x2)
m2 <- lm(y ~ x1cent + x2cent + x1cent*x2cent)
summary(m1)
summary(m2)
Çıktı:
> summary(m1)
Call:
lm(formula = y ~ x1 + x2 + x1 * x2)
Residuals:
Min 1Q Median 3Q Max
-344.62 -66.29 -1.44 66.05 392.22
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 193.333 335.281 0.577 0.564
x1 -15.830 33.719 -0.469 0.639
x2 -14.065 33.567 -0.419 0.675
x1:x2 1.179 3.375 0.349 0.727
Residual standard error: 101.3 on 996 degrees of freedom
Multiple R-squared: 0.002363, Adjusted R-squared: -0.0006416
F-statistic: 0.7865 on 3 and 996 DF, p-value: 0.5015
> summary(m2)
Call:
lm(formula = y ~ x1cent + x2cent + x1cent * x2cent)
Residuals:
Min 1Q Median 3Q Max
-344.62 -66.29 -1.44 66.05 392.22
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.513 3.203 3.907 9.99e-05 ***
x1cent -4.106 3.186 -1.289 0.198
x2cent -2.291 3.198 -0.716 0.474
x1cent:x2cent 1.179 3.375 0.349 0.727
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 101.3 on 996 degrees of freedom
Multiple R-squared: 0.002363, Adjusted R-squared: -0.0006416
F-statistic: 0.7865 on 3 and 996 DF, p-value: 0.5015
library(perturb)
colldiag(m1)
colldiag(m2)
Diğer değişkenleri ortalayıp merkezlemediğiniz size bağlıdır; etkileşime dahil olmayan bir değişkeni ortalamak (standartlaştırmanın aksine), kesişmenin anlamını değiştirecek, ancak başka şeyleri değiştirmeyecektir.
x1 <- rnorm(1000, 10, 1)
x2 <- x1 - mean(x1)
y <- x1 + rnorm(1000, 5, 5)
m1 <- lm(y ~ x1)
m2 <- lm(y ~ x2)
summary(m1)
summary(m2)
Çıktı:
> summary(m1)
Call:
lm(formula = y ~ x1)
Residuals:
Min 1Q Median 3Q Max
-16.5288 -3.3348 0.0946 3.4293 14.0678
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.5412 1.6003 4.087 4.71e-05 ***
x1 0.8548 0.1591 5.373 9.63e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 5.082 on 998 degrees of freedom
Multiple R-squared: 0.02812, Adjusted R-squared: 0.02714
F-statistic: 28.87 on 1 and 998 DF, p-value: 9.629e-08
> summary(m2)
Call:
lm(formula = y ~ x2)
Residuals:
Min 1Q Median 3Q Max
-16.5288 -3.3348 0.0946 3.4293 14.0678
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.0965 0.1607 93.931 < 2e-16 ***
x2 0.8548 0.1591 5.373 9.63e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 5.082 on 998 degrees of freedom
Multiple R-squared: 0.02812, Adjusted R-squared: 0.02714
F-statistic: 28.87 on 1 and 998 DF, p-value: 9.629e-08
Ancak değişkenlerin kayıtlarını almalısınız, çünkü bunu yapmak mantıklıdır veya modeldeki artıklar çok fazla değişkenliğe sahip oldukları için değil, yapmanız gerektiğini belirtmektedir. Regresyon değişkenlerin dağılımı ile ilgili varsayımlar yapmaz, artıkların dağılımı ile ilgili varsayımlar yapar.