Bu grafiği yapmak için, ortalama = 0 ve sd = 1 olan normal bir dağılımdan farklı büyüklükte rastgele örnekler ürettim. Güven aralıkları daha sonra t.test () işleviyle .001 ile .999 (kırmızı çizgi) arasında değişen alfa kesimleri kullanılarak hesaplandı, profil olasılığı, aşağıdaki notlarda bulduğum kod kullanılarak hesaplandı (I can ' t Şu anda bağlantıyı bul Düzenle: Bulundu ), bu mavi çizgilerle gösterilir. Yeşil çizgiler R yoğunluğu () işlevini kullanarak normalleştirilmiş yoğunluğu gösterir ve veriler her grafiğin altındaki kutu grafikler ile gösterilir. Sağda% 95 güven aralıklarının (kırmızı) ve maksimum olabilirlik aralıklarının 1 / 20'sinin (mavi) tırtıl grafiği.
Profil olasılığı için kullanılan R Kodu:
#mn=mean(dat)
muVals <- seq(low,high, length = 1000)
likVals <- sapply(muVals,
function(mu){
(sum((dat - mu)^2) /
sum((dat - mn)^2)) ^ (-n/2)
}
)
Benim özel sorum, bu iki aralık türü arasında bilinen bir ilişki olup olmadığı ve güven aralığının n = 3 dışındaki tüm durumlar için neden daha muhafazakar olduğu görünüyor. Hesaplamalarımın geçerli olup olmadığı (ve bunu yapmanın daha iyi bir yolu) ve bu iki aralık arasındaki genel ilişki hakkında yorum / cevaplar da istenmektedir.
R kodu:
samp.size=c(3,4,5,10,20,1000)
cnt2<-1
ints=matrix(nrow=length(samp.size),ncol=4)
layout(matrix(c(1,2,7,3,4,7,5,6,7),nrow=3,ncol=3, byrow=T))
par(mar=c(5.1,4.1,4.1,4.1))
for(j in samp.size){
#set.seed(200)
dat<-rnorm(j,0,1)
vals<-seq(.001,.999, by=.001)
cis<-matrix(nrow=length(vals),ncol=3)
cnt<-1
for(ci in vals){
x<-t.test(dat,conf.level=ci)$conf.int[1:2]
cis[cnt,]<-cbind(ci,x[1],x[2])
cnt<-cnt+1
}
mn=mean(dat)
n=length(dat)
high<-max(c(dat,cis[970,3]), na.rm=T)
low<-min(c(dat,cis[970,2]), na.rm=T)
#high<-max(abs(c(dat,cis[970,2],cis[970,3])), na.rm=T)
#low<--high
muVals <- seq(low,high, length = 1000)
likVals <- sapply(muVals,
function(mu){
(sum((dat - mu)^2) /
sum((dat - mn)^2)) ^ (-n/2)
}
)
plot(muVals, likVals, type = "l", lwd=3, col="Blue", xlim=c(low,high),
ylim=c(-.1,1), ylab="Likelihood/Alpha", xlab="Values",
main=c(paste("n=",n),
"True Mean=0 True sd=1",
paste("Sample Mean=", round(mn,2), "Sample sd=", round(sd(dat),2)))
)
axis(side=4,at=seq(0,1,length=6),
labels=round(seq(0,max(density(dat)$y),length=6),2))
mtext(4, text="Density", line=2.2,cex=.8)
lines(density(dat)$x,density(dat)$y/max(density(dat)$y), lwd=2, col="Green")
lines(range(muVals[likVals>1/20]), c(1/20,1/20), col="Blue", lwd=4)
lines(cis[,2],1-cis[,1], lwd=3, col="Red")
lines(cis[,3],1-cis[,1], lwd=3, col="Red")
lines(cis[which(round(cis[,1],3)==.95),2:3],rep(.05,2),
lty=3, lwd=4, col="Red")
abline(v=mn, lty=2, lwd=2)
#abline(h=.05, lty=3, lwd=4, col="Red")
abline(h=0, lty=1, lwd=3)
abline(v=0, lty=3, lwd=1)
boxplot(dat,at=-.1,add=T, horizontal=T, boxwex=.1, col="Green")
stripchart(dat,at=-.1,add=T, pch=16, cex=1.1)
legend("topleft", legend=c("Likelihood"," Confidence Interval", "Sample Density"),
col=c("Blue","Red", "Green"), lwd=3,bty="n")
ints[cnt2,]<-cbind(range(muVals[likVals>1/20])[1],range(muVals[likVals>1/20])[2],
cis[which(round(cis[,1],3)==.95),2],cis[which(round(cis[,1],3)==.95),3])
cnt2<-cnt2+1
}
par(mar=c(5.1,4.1,4.1,2.1))
plot(0,0, type="n", ylim=c(1,nrow(ints)+.5), xlim=c(min(ints),max(ints)),
yaxt="n", ylab="Sample Size", xlab="Values")
for(i in 1:nrow(ints)){
segments(ints[i,1],i+.2,ints[i,2],i+.2, lwd=3, col="Blue")
segments(ints[i,3],i+.3,ints[i,4],i+.3, lwd=3, col="Red")
}
axis(side=2, at=seq(1.25,nrow(ints)+.25,by=1), samp.size)
mn
bir yazım hatasıdırmu
, değilmean(dat)
. Diğer sorunuzun yorumlarında size söylediğim gibi , bu, tanım sayfa 23'den açık olmalıdır.